Struct sgx_tstd::sync::atomic::AtomicI64 [−][src]
#[repr(transparent)]pub struct AtomicI64 { /* fields omitted */ }
integer_atomics
)An integer type which can be safely shared between threads.
This type has the same in-memory representation as the underlying
integer type, i64
. For more about the differences between atomic types and
non-atomic types, please see the module-level documentation.
Methods
impl AtomicI64
[src]
impl AtomicI64
pub const fn new(v: i64) -> AtomicI64
[src]
pub const fn new(v: i64) -> AtomicI64
integer_atomics
)Creates a new atomic integer.
Examples
#![feature(integer_atomics)] use std::sync::atomic::AtomicI64; let atomic_forty_two = AtomicI64::new(42);
pub fn get_mut(&mut self) -> &mut i64
[src]
pub fn get_mut(&mut self) -> &mut i64
integer_atomics
)Returns a mutable reference to the underlying integer.
This is safe because the mutable reference guarantees that no other threads are concurrently accessing the atomic data.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let mut some_var = AtomicI64::new(10); assert_eq!(*some_var.get_mut(), 10); *some_var.get_mut() = 5; assert_eq!(some_var.load(Ordering::SeqCst), 5);
pub fn into_inner(self) -> i64
[src]
pub fn into_inner(self) -> i64
integer_atomics
)Consumes the atomic and returns the contained value.
This is safe because passing self
by value guarantees that no other threads are
concurrently accessing the atomic data.
Examples
#![feature(integer_atomics)] use std::sync::atomic::AtomicI64; let some_var = AtomicI64::new(5); assert_eq!(some_var.into_inner(), 5);
pub fn load(&self, order: Ordering) -> i64
[src]
pub fn load(&self, order: Ordering) -> i64
integer_atomics
)Loads a value from the atomic integer.
load
takes an Ordering
argument which describes the memory ordering of this operation.
Panics
Panics if order
is Release
or AcqRel
.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let some_var = AtomicI64::new(5); assert_eq!(some_var.load(Ordering::Relaxed), 5);
pub fn store(&self, val: i64, order: Ordering)
[src]
pub fn store(&self, val: i64, order: Ordering)
integer_atomics
)Stores a value into the atomic integer.
store
takes an Ordering
argument which describes the memory ordering of this operation.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let some_var = AtomicI64::new(5); some_var.store(10, Ordering::Relaxed); assert_eq!(some_var.load(Ordering::Relaxed), 10);
Panics
pub fn swap(&self, val: i64, order: Ordering) -> i64
[src]
pub fn swap(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Stores a value into the atomic integer, returning the previous value.
swap
takes an Ordering
argument which describes the memory ordering of this operation.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let some_var = AtomicI64::new(5); assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
pub fn compare_and_swap(&self, current: i64, new: i64, order: Ordering) -> i64
[src]
pub fn compare_and_swap(&self, current: i64, new: i64, order: Ordering) -> i64
integer_atomics
)Stores a value into the atomic integer if the current value is the same as
the current
value.
The return value is always the previous value. If it is equal to current
, then the
value was updated.
compare_and_swap
also takes an Ordering
argument which describes the memory
ordering of this operation.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let some_var = AtomicI64::new(5); assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5); assert_eq!(some_var.load(Ordering::Relaxed), 10); assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10); assert_eq!(some_var.load(Ordering::Relaxed), 10);
pub fn compare_exchange(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering
) -> Result<i64, i64>
[src]
pub fn compare_exchange(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering
) -> Result<i64, i64>
integer_atomics
)Stores a value into the atomic integer if the current value is the same as
the current
value.
The return value is a result indicating whether the new value was written and
containing the previous value. On success this value is guaranteed to be equal to
current
.
compare_exchange
takes two Ordering
arguments to describe the memory
ordering of this operation. The first describes the required ordering if
the operation succeeds while the second describes the required ordering when
the operation fails. The failure ordering can't be Release
or AcqRel
and
must be equivalent or weaker than the success ordering.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let some_var = AtomicI64::new(5); assert_eq!(some_var.compare_exchange(5, 10, Ordering::Acquire, Ordering::Relaxed), Ok(5)); assert_eq!(some_var.load(Ordering::Relaxed), 10); assert_eq!(some_var.compare_exchange(6, 12, Ordering::SeqCst, Ordering::Acquire), Err(10)); assert_eq!(some_var.load(Ordering::Relaxed), 10);
pub fn compare_exchange_weak(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering
) -> Result<i64, i64>
[src]
pub fn compare_exchange_weak(
&self,
current: i64,
new: i64,
success: Ordering,
failure: Ordering
) -> Result<i64, i64>
integer_atomics
)Stores a value into the atomic integer if the current value is the same as
the current
value.
Unlike compare_exchange
, this function is allowed to spuriously fail even
when the comparison succeeds, which can result in more efficient code on some
platforms. The return value is a result indicating whether the new value was
written and containing the previous value.
compare_exchange_weak
takes two Ordering
arguments to describe the memory
ordering of this operation. The first describes the required ordering if the
operation succeeds while the second describes the required ordering when the
operation fails. The failure ordering can't be Release
or AcqRel
and
must be equivalent or weaker than the success ordering.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let val = AtomicI64::new(4); let mut old = val.load(Ordering::Relaxed); loop { let new = old * 2; match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) { Ok(_) => break, Err(x) => old = x, } }
pub fn fetch_add(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_add(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Adds to the current value, returning the previous value.
This operation wraps around on overflow.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(0); assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0); assert_eq!(foo.load(Ordering::SeqCst), 10);
pub fn fetch_sub(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_sub(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Subtracts from the current value, returning the previous value.
This operation wraps around on overflow.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(20); assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20); assert_eq!(foo.load(Ordering::SeqCst), 10);
pub fn fetch_and(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_and(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Bitwise "and" with the current value.
Performs a bitwise "and" operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(0b101101); assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101); assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
pub fn fetch_nand(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_nand(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Bitwise "nand" with the current value.
Performs a bitwise "nand" operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(0x13); assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13); assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
pub fn fetch_or(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_or(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Bitwise "or" with the current value.
Performs a bitwise "or" operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(0b101101); assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101); assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
pub fn fetch_xor(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_xor(&self, val: i64, order: Ordering) -> i64
integer_atomics
)Bitwise "xor" with the current value.
Performs a bitwise "xor" operation on the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(0b101101); assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101); assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
pub fn fetch_update<F>(
&self,
f: F,
fetch_order: Ordering,
set_order: Ordering
) -> Result<i64, i64> where
F: FnMut(i64) -> Option<i64>,
[src]
pub fn fetch_update<F>(
&self,
f: F,
fetch_order: Ordering,
set_order: Ordering
) -> Result<i64, i64> where
F: FnMut(i64) -> Option<i64>,
🔬 This is a nightly-only experimental API. (no_more_cas
)
no more CAS loops in user code
Fetches the value, and applies a function to it that returns an optional
new value. Returns a Result
of Ok(previous_value)
if the function returned Some(_)
, else
Err(previous_value)
.
Note: This may call the function multiple times if the value has been changed from other threads in
the meantime, as long as the function returns Some(_)
, but the function will have been applied
but once to the stored value.
Examples
#![feature(no_more_cas)] #![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let x = AtomicI64::new(7); assert_eq!(x.fetch_update(|_| None, Ordering::SeqCst, Ordering::SeqCst), Err(7)); assert_eq!(x.fetch_update(|x| Some(x + 1), Ordering::SeqCst, Ordering::SeqCst), Ok(7)); assert_eq!(x.fetch_update(|x| Some(x + 1), Ordering::SeqCst, Ordering::SeqCst), Ok(8)); assert_eq!(x.load(Ordering::SeqCst), 9);
pub fn fetch_max(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_max(&self, val: i64, order: Ordering) -> i64
🔬 This is a nightly-only experimental API. (atomic_min_max
)
easier and faster min/max than writing manual CAS loop
Maximum with the current value.
Finds the maximum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(atomic_min_max)] #![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(23); assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23); assert_eq!(foo.load(Ordering::SeqCst), 42);
If you want to obtain the maximum value in one step, you can use the following:
#![feature(atomic_min_max)] #![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(23); let bar = 42; let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar); assert!(max_foo == 42);
pub fn fetch_min(&self, val: i64, order: Ordering) -> i64
[src]
pub fn fetch_min(&self, val: i64, order: Ordering) -> i64
🔬 This is a nightly-only experimental API. (atomic_min_max
)
easier and faster min/max than writing manual CAS loop
Minimum with the current value.
Finds the minimum of the current value and the argument val
, and
sets the new value to the result.
Returns the previous value.
Examples
#![feature(atomic_min_max)] #![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(23); assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23); assert_eq!(foo.load(Ordering::Relaxed), 23); assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23); assert_eq!(foo.load(Ordering::Relaxed), 22);
If you want to obtain the minimum value in one step, you can use the following:
#![feature(atomic_min_max)] #![feature(integer_atomics)] use std::sync::atomic::{AtomicI64, Ordering}; let foo = AtomicI64::new(23); let bar = 12; let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar); assert_eq!(min_foo, 12);
Trait Implementations
impl Debug for AtomicI64
[src]
impl Debug for AtomicI64
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter. Read more
impl From<i64> for AtomicI64
[src]
impl From<i64> for AtomicI64
impl Sync for AtomicI64
[src]
impl Sync for AtomicI64
impl Default for AtomicI64
[src]
impl Default for AtomicI64
impl RefUnwindSafe for AtomicI64
[src]
impl RefUnwindSafe for AtomicI64