1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//  * Neither the name of Baidu, Inc., nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! This module provides constants which are specific to the implementation
//! of the `f64` floating point data type.
//!
//! *[See also the `f64` primitive type](../../std/primitive.f64.html).*
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.

#![allow(missing_docs)]

use intrinsics;
use sys::cmath;

pub use core::f64::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON};
pub use core::f64::{MIN_EXP, MAX_EXP, MIN_10_EXP};
pub use core::f64::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY};
pub use core::f64::{MIN, MIN_POSITIVE, MAX};
pub use core::f64::consts;

#[lang = "f64_runtime"]
impl f64 {
    /// Returns the largest integer less than or equal to a number.
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.99_f64;
    /// let g = 3.0_f64;
    ///
    /// assert_eq!(f.floor(), 3.0);
    /// assert_eq!(g.floor(), 3.0);
    /// ```
    #[inline]
    pub fn floor(self) -> f64 {
        unsafe { intrinsics::floorf64(self) }
    }

    /// Returns the smallest integer greater than or equal to a number.
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.01_f64;
    /// let g = 4.0_f64;
    ///
    /// assert_eq!(f.ceil(), 4.0);
    /// assert_eq!(g.ceil(), 4.0);
    /// ```
    #[inline]
    pub fn ceil(self) -> f64 {
        unsafe { intrinsics::ceilf64(self) }
    }

    /// Returns the nearest integer to a number. Round half-way cases away from
    /// `0.0`.
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.3_f64;
    /// let g = -3.3_f64;
    ///
    /// assert_eq!(f.round(), 3.0);
    /// assert_eq!(g.round(), -3.0);
    /// ```
    #[inline]
    pub fn round(self) -> f64 {
        unsafe { intrinsics::roundf64(self) }
    }

    /// Returns the integer part of a number.
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 3.3_f64;
    /// let g = -3.7_f64;
    ///
    /// assert_eq!(f.trunc(), 3.0);
    /// assert_eq!(g.trunc(), -3.0);
    /// ```
    #[inline]
    pub fn trunc(self) -> f64 {
        unsafe { intrinsics::truncf64(self) }
    }

    /// Returns the fractional part of a number.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 3.5_f64;
    /// let y = -3.5_f64;
    /// let abs_difference_x = (x.fract() - 0.5).abs();
    /// let abs_difference_y = (y.fract() - (-0.5)).abs();
    ///
    /// assert!(abs_difference_x < 1e-10);
    /// assert!(abs_difference_y < 1e-10);
    /// ```
    #[inline]
    pub fn fract(self) -> f64 { self - self.trunc() }

    /// Computes the absolute value of `self`. Returns `NAN` if the
    /// number is `NAN`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = 3.5_f64;
    /// let y = -3.5_f64;
    ///
    /// let abs_difference_x = (x.abs() - x).abs();
    /// let abs_difference_y = (y.abs() - (-y)).abs();
    ///
    /// assert!(abs_difference_x < 1e-10);
    /// assert!(abs_difference_y < 1e-10);
    ///
    /// assert!(f64::NAN.abs().is_nan());
    /// ```
    #[inline]
    pub fn abs(self) -> f64 {
        unsafe { intrinsics::fabsf64(self) }
    }

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
    /// - `NAN` if the number is `NAN`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let f = 3.5_f64;
    ///
    /// assert_eq!(f.signum(), 1.0);
    /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
    ///
    /// assert!(f64::NAN.signum().is_nan());
    /// ```
    #[inline]
    pub fn signum(self) -> f64 {
        if self.is_nan() {
            NAN
        } else {
            unsafe { intrinsics::copysignf64(1.0, self) }
        }
    }

    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
    /// error, yielding a more accurate result than an unfused multiply-add.
    ///
    /// Using `mul_add` can be more performant than an unfused multiply-add if
    /// the target architecture has a dedicated `fma` CPU instruction.
    ///
    /// # Examples
    ///
    /// ```
    /// let m = 10.0_f64;
    /// let x = 4.0_f64;
    /// let b = 60.0_f64;
    ///
    /// // 100.0
    /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn mul_add(self, a: f64, b: f64) -> f64 {
        unsafe { intrinsics::fmaf64(self, a, b) }
    }

    /// Calculates Euclidean division, the matching method for `mod_euc`.
    ///
    /// This computes the integer `n` such that
    /// `self = n * rhs + self.mod_euc(rhs)`.
    /// In other words, the result is `self / rhs` rounded to the integer `n`
    /// such that `self >= n * rhs`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(euclidean_division)]
    /// let a: f64 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0
    /// assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0
    /// assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0
    /// assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0
    /// ```
    #[inline]
    pub fn div_euc(self, rhs: f64) -> f64 {
        let q = (self / rhs).trunc();
        if self % rhs < 0.0 {
            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 }
        }
        q
    }

    /// Calculates the Euclidean modulo (self mod rhs), which is never negative.
    ///
    /// In particular, the result `n` satisfies `0 <= n < rhs.abs()`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(euclidean_division)]
    /// let a: f64 = 7.0;
    /// let b = 4.0;
    /// assert_eq!(a.mod_euc(b), 3.0);
    /// assert_eq!((-a).mod_euc(b), 1.0);
    /// assert_eq!(a.mod_euc(-b), 3.0);
    /// assert_eq!((-a).mod_euc(-b), 1.0);
    /// ```
    #[inline]
    pub fn mod_euc(self, rhs: f64) -> f64 {
        let r = self % rhs;
        if r < 0.0 {
            r + rhs.abs()
        } else {
            r
        }
    }

    /// Raises a number to an integer power.
    ///
    /// Using this function is generally faster than using `powf`
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0_f64;
    /// let abs_difference = (x.powi(2) - x*x).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn powi(self, n: i32) -> f64 {
        unsafe { intrinsics::powif64(self, n) }
    }

    /// Raises a number to a floating point power.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0_f64;
    /// let abs_difference = (x.powf(2.0) - x*x).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn powf(self, n: f64) -> f64 {
        unsafe { intrinsics::powf64(self, n) }
    }

    /// Takes the square root of a number.
    ///
    /// Returns NaN if `self` is a negative number.
    ///
    /// # Examples
    ///
    /// ```
    /// let positive = 4.0_f64;
    /// let negative = -4.0_f64;
    ///
    /// let abs_difference = (positive.sqrt() - 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// assert!(negative.sqrt().is_nan());
    /// ```
    #[inline]
    pub fn sqrt(self) -> f64 {
        if self < 0.0 {
            NAN
        } else {
            unsafe { intrinsics::sqrtf64(self) }
        }
    }

    /// Returns `e^(self)`, (the exponential function).
    ///
    /// # Examples
    ///
    /// ```
    /// let one = 1.0_f64;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn exp(self) -> f64 {
        unsafe { intrinsics::expf64(self) }
    }

    /// Returns `2^(self)`.
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 2.0_f64;
    ///
    /// // 2^2 - 4 == 0
    /// let abs_difference = (f.exp2() - 4.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn exp2(self) -> f64 {
        unsafe { intrinsics::exp2f64(self) }
    }

    /// Returns the natural logarithm of the number.
    ///
    /// # Examples
    ///
    /// ```
    /// let one = 1.0_f64;
    /// // e^1
    /// let e = one.exp();
    ///
    /// // ln(e) - 1 == 0
    /// let abs_difference = (e.ln() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn ln(self) -> f64 {
        self.log_wrapper(|n| { unsafe { intrinsics::logf64(n) } })
    }

    /// Returns the logarithm of the number with respect to an arbitrary base.
    ///
    /// The result may not be correctly rounded owing to implementation details;
    /// `self.log2()` can produce more accurate results for base 2, and
    /// `self.log10()` can produce more accurate results for base 10.
    ///
    /// # Examples
    ///
    /// ```
    /// let five = 5.0_f64;
    ///
    /// // log5(5) - 1 == 0
    /// let abs_difference = (five.log(5.0) - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn log(self, base: f64) -> f64 { self.ln() / base.ln() }

    /// Returns the base 2 logarithm of the number.
    ///
    /// # Examples
    ///
    /// ```
    /// let two = 2.0_f64;
    ///
    /// // log2(2) - 1 == 0
    /// let abs_difference = (two.log2() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn log2(self) -> f64 {
        self.log_wrapper(|n| {
            #[cfg(target_os = "android")]
            return ::sys::android::log2f64(n);
            #[cfg(not(target_os = "android"))]
            return unsafe { intrinsics::log2f64(n) };
        })
    }

    /// Returns the base 10 logarithm of the number.
    ///
    /// # Examples
    ///
    /// ```
    /// let ten = 10.0_f64;
    ///
    /// // log10(10) - 1 == 0
    /// let abs_difference = (ten.log10() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn log10(self) -> f64 {
        self.log_wrapper(|n| { unsafe { intrinsics::log10f64(n) } })
    }

    /// Takes the cubic root of a number.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 8.0_f64;
    ///
    /// // x^(1/3) - 2 == 0
    /// let abs_difference = (x.cbrt() - 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn cbrt(self) -> f64 {
        unsafe { cmath::cbrt(self) }
    }

    /// Calculates the length of the hypotenuse of a right-angle triangle given
    /// legs of length `x` and `y`.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 2.0_f64;
    /// let y = 3.0_f64;
    ///
    /// // sqrt(x^2 + y^2)
    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn hypot(self, other: f64) -> f64 {
        unsafe { cmath::hypot(self, other) }
    }

    /// Computes the sine of a number (in radians).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/2.0;
    ///
    /// let abs_difference = (x.sin() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn sin(self) -> f64 {
        unsafe { intrinsics::sinf64(self) }
    }

    /// Computes the cosine of a number (in radians).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = 2.0*f64::consts::PI;
    ///
    /// let abs_difference = (x.cos() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn cos(self) -> f64 {
        unsafe { intrinsics::cosf64(self) }
    }

    /// Computes the tangent of a number (in radians).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/4.0;
    /// let abs_difference = (x.tan() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-14);
    /// ```
    #[inline]
    pub fn tan(self) -> f64 {
        unsafe { cmath::tan(self) }
    }

    /// Computes the arcsine of a number. Return value is in radians in
    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let f = f64::consts::PI / 2.0;
    ///
    /// // asin(sin(pi/2))
    /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn asin(self) -> f64 {
        unsafe { cmath::asin(self) }
    }

    /// Computes the arccosine of a number. Return value is in radians in
    /// the range [0, pi] or NaN if the number is outside the range
    /// [-1, 1].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let f = f64::consts::PI / 4.0;
    ///
    /// // acos(cos(pi/4))
    /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn acos(self) -> f64 {
        unsafe { cmath::acos(self) }
    }

    /// Computes the arctangent of a number. Return value is in radians in the
    /// range [-pi/2, pi/2];
    ///
    /// # Examples
    ///
    /// ```
    /// let f = 1.0_f64;
    ///
    /// // atan(tan(1))
    /// let abs_difference = (f.tan().atan() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn atan(self) -> f64 {
        unsafe { cmath::atan(self) }
    }

    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
    ///
    /// * `x = 0`, `y = 0`: `0`
    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let pi = f64::consts::PI;
    /// // Positive angles measured counter-clockwise
    /// // from positive x axis
    /// // -pi/4 radians (45 deg clockwise)
    /// let x1 = 3.0_f64;
    /// let y1 = -3.0_f64;
    ///
    /// // 3pi/4 radians (135 deg counter-clockwise)
    /// let x2 = -3.0_f64;
    /// let y2 = 3.0_f64;
    ///
    /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
    /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
    ///
    /// assert!(abs_difference_1 < 1e-10);
    /// assert!(abs_difference_2 < 1e-10);
    /// ```
    #[inline]
    pub fn atan2(self, other: f64) -> f64 {
        unsafe { cmath::atan2(self, other) }
    }

    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
    /// `(sin(x), cos(x))`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = f64::consts::PI/4.0;
    /// let f = x.sin_cos();
    ///
    /// let abs_difference_0 = (f.0 - x.sin()).abs();
    /// let abs_difference_1 = (f.1 - x.cos()).abs();
    ///
    /// assert!(abs_difference_0 < 1e-10);
    /// assert!(abs_difference_1 < 1e-10);
    /// ```
    #[inline]
    pub fn sin_cos(self) -> (f64, f64) {
        (self.sin(), self.cos())
    }

    /// Returns `e^(self) - 1` in a way that is accurate even if the
    /// number is close to zero.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 7.0_f64;
    ///
    /// // e^(ln(7)) - 1
    /// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn exp_m1(self) -> f64 {
        unsafe { cmath::expm1(self) }
    }

    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
    /// the operations were performed separately.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let x = f64::consts::E - 1.0;
    ///
    /// // ln(1 + (e - 1)) == ln(e) == 1
    /// let abs_difference = (x.ln_1p() - 1.0).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn ln_1p(self) -> f64 {
        unsafe { cmath::log1p(self) }
    }

    /// Hyperbolic sine function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0_f64;
    ///
    /// let f = x.sinh();
    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
    /// let g = (e*e - 1.0)/(2.0*e);
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference < 1e-10);
    /// ```
    #[inline]
    pub fn sinh(self) -> f64 {
        unsafe { cmath::sinh(self) }
    }

    /// Hyperbolic cosine function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0_f64;
    /// let f = x.cosh();
    /// // Solving cosh() at 1 gives this result
    /// let g = (e*e + 1.0)/(2.0*e);
    /// let abs_difference = (f - g).abs();
    ///
    /// // Same result
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    #[inline]
    pub fn cosh(self) -> f64 {
        unsafe { cmath::cosh(self) }
    }

    /// Hyperbolic tangent function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let x = 1.0_f64;
    ///
    /// let f = x.tanh();
    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
    /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
    /// let abs_difference = (f - g).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    #[inline]
    pub fn tanh(self) -> f64 {
        unsafe { cmath::tanh(self) }
    }

    /// Inverse hyperbolic sine function.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1.0_f64;
    /// let f = x.sinh().asinh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    #[inline]
    pub fn asinh(self) -> f64 {
        if self == NEG_INFINITY {
            NEG_INFINITY
        } else {
            (self + ((self * self) + 1.0).sqrt()).ln()
        }
    }

    /// Inverse hyperbolic cosine function.
    ///
    /// # Examples
    ///
    /// ```
    /// let x = 1.0_f64;
    /// let f = x.cosh().acosh();
    ///
    /// let abs_difference = (f - x).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    #[inline]
    pub fn acosh(self) -> f64 {
        match self {
            x if x < 1.0 => NAN,
            x => (x + ((x * x) - 1.0).sqrt()).ln(),
        }
    }

    /// Inverse hyperbolic tangent function.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::f64;
    ///
    /// let e = f64::consts::E;
    /// let f = e.tanh().atanh();
    ///
    /// let abs_difference = (f - e).abs();
    ///
    /// assert!(abs_difference < 1.0e-10);
    /// ```
    #[inline]
    pub fn atanh(self) -> f64 {
        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
    }

    // Solaris/Illumos requires a wrapper around log, log2, and log10 functions
    // because of their non-standard behavior (e.g. log(-n) returns -Inf instead
    // of expected NaN).
    fn log_wrapper<F: Fn(f64) -> f64>(self, log_fn: F) -> f64 {
        if !cfg!(target_os = "solaris") {
            log_fn(self)
        } else {
            if self.is_finite() {
                if self > 0.0 {
                    log_fn(self)
                } else if self == 0.0 {
                    NEG_INFINITY // log(0) = -Inf
                } else {
                    NAN // log(-n) = NaN
                }
            } else if self.is_nan() {
                self // log(NaN) = NaN
            } else if self > 0.0 {
                self // log(Inf) = Inf
            } else {
                NAN // log(-Inf) = NaN
            }
        }
    }
}