1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//  * Neither the name of Baidu, Inc., nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use sgx_types::*;
use sgx_types::marker::ContiguousMemory;
use core::mem;

///
/// rsgx_read_rand function is used to generate a random number inside the enclave.
///
/// # Description
///
/// The rsgx_read_rand function is provided to replace the standard pseudo-random sequence generation functions
/// inside the enclave, since these standard functions are not supported in the enclave, such as rand, srand, etc.
/// For HW mode, the function generates a real-random sequence; while in simulation mode, the function generates
/// a pseudo-random sequence.
///
/// # Parameters
///
/// **rand**
///
/// A pointer to the buffer that stores the generated random number. The rand buffer can be either within or outside the enclave,
/// but it is not allowed to be across the enclave boundary or wrapped around.
///
/// # Requirements
///
/// Library: libsgx_trts.a
///
/// # Errors
///
/// **SGX_ERROR_INVALID_PARAMETER**
///
/// Invalid input parameters detected.
///
/// **SGX_ERROR_UNEXPECTED**
///
/// Indicates an unexpected error occurs during the valid random number generation process.
///
pub fn rsgx_read_rand(rand: &mut [u8]) -> SgxError {

    let ret = unsafe { sgx_read_rand(rand.as_mut_ptr(), rand.len()) };
    match ret {
        sgx_status_t::SGX_SUCCESS => Ok(()),
        _ => Err(ret),
    }
}

///
/// rsgx_data_is_within_enclave checks whether a given address is within enclave memory.
///
#[inline]
pub fn rsgx_data_is_within_enclave<T: Copy + ContiguousMemory>(data: &T) -> bool {

    rsgx_raw_is_within_enclave(data as * const _ as * const u8, mem::size_of::<T>())
}

///
/// rsgx_slice_is_within_enclave checks whether a given address is within enclave memory.
///
#[inline]
pub fn rsgx_slice_is_within_enclave<T: Copy + ContiguousMemory>(data: &[T]) -> bool {

    rsgx_raw_is_within_enclave(data.as_ptr() as * const u8, mem::size_of_val(data))
}

///
/// rsgx_raw_is_within_enclave checks whether a given address is within enclave memory.
///
/// The rsgx_raw_is_within_enclave function checks that the buffer located at the pointer addr with its
/// length of size is an address that is strictly within the calling enclave address space.
///
/// # Description
///
/// rsgx_raw_is_within_enclave simply compares the start and end address of the buffer with the calling
/// enclave address space. It does not check the property of the address. Given a function pointer, you
/// sometimes need to confirm whether such a function is within the enclave. In this case, it is recommended
/// to use rsgx_raw_is_within_enclave with a size of 1.
///
/// # Parameters
///
/// **addr**
///
/// The start address of the buffer.
///
/// **size**
///
/// The size of the buffer.
///
/// # Requirements
///
/// Library: libsgx_trts.a
///
/// # Return value
///
/// **true**
///
/// The buffer is strictly within the enclave address space.
///
/// **false**
///
/// The whole buffer or part of the buffer is not within the enclave, or the buffer is wrapped around.
///
pub fn rsgx_raw_is_within_enclave(addr: * const u8, size: usize) -> bool {

    let ret = unsafe { sgx_is_within_enclave(addr as * const c_void, size) };
    if ret == 0 { false } else { true }
}

///
/// rsgx_data_is_outside_enclave checks whether a given address is outside enclave memory.
///
#[inline]
pub fn rsgx_data_is_outside_enclave<T: Copy + ContiguousMemory>(data: &T) -> bool {

    rsgx_raw_is_outside_enclave(data as * const _ as * const u8,  mem::size_of::<T>())
}

///
/// rsgx_slice_is_outside_enclave checks whether a given address is outside enclave memory.
///
#[inline]
pub fn rsgx_slice_is_outside_enclave<T: Copy + ContiguousMemory>(data: &[T]) -> bool {

    rsgx_raw_is_outside_enclave(data.as_ptr() as * const u8, mem::size_of_val(data))
}

///
/// rsgx_raw_is_outside_enclave checks whether a given address is outside enclave memory.
///
/// The rsgx_raw_is_outside_enclave function checks that the buffer located at the pointer addr with its
/// length of size is an address that is strictly outside the calling enclave address space.
///
/// # Description
///
/// rsgx_raw_is_outside_enclave simply compares the start and end address of the buffer with the calling
/// enclave address space. It does not check the property of the address.
///
/// # Parameters
///
/// **addr**
///
/// The start address of the buffer.
///
/// **size**
///
/// The size of the buffer.
///
/// # Requirements
///
/// Library: libsgx_trts.a
///
/// # Return value
///
/// **true**
///
/// The buffer is strictly outside the enclave address space.
///
/// **false**
///
/// The whole buffer or part of the buffer is not outside the enclave, or the buffer is wrapped around.
///
pub fn rsgx_raw_is_outside_enclave(addr: * const u8, size: usize) -> bool {

    let ret = unsafe { sgx_is_outside_enclave(addr as * const c_void, size) };
    if ret == 0 { false } else { true }
}

pub fn rsgx_is_enclave_crashed() -> bool {

    let ret = unsafe { sgx_is_enclave_crashed() };
    if ret == 0 { false } else { true }
}

pub type exit_function_t = extern "C" fn();

#[link(name = "sgx_trts")]
extern {
    pub fn abort() -> !;
    pub fn atexit(fun: exit_function_t) -> c_int;
}

pub fn rsgx_abort() -> ! {
    unsafe { abort() }
}

pub fn rsgx_atexit(fun: exit_function_t) -> bool {

    let ret = unsafe { atexit(fun) };
    if ret < 0 {
        false
    } else {
        true
    }
}

#[inline(always)]
pub fn rsgx_lfence() {
    unsafe { asm!{"lfence"}; }
}

#[inline(always)]
pub fn rsgx_sfence() {
    unsafe { asm!{"sfence"}; }
}

#[inline(always)]
pub fn rsgx_mfence() {
    unsafe { asm!{"mfence"}; }
}