1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//  * Neither the name of Baidu, Inc., nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

//! # Diffie–Hellman (DH) Session Establishment Functions
//!
//! These functions allow an ISV to establish secure session between two enclaves using the EC DH Key exchange protocol.
//!
use sgx_types::*;
use sgx_types::marker::ContiguousMemory;
use sgx_trts::trts::*;
use sgx_trts::memeq::ConsttimeMemEq;
use sgx_tcrypto::*;
use sgx_tse::*;
use ecp::*;
use core::mem;
use core::ptr;
use alloc::slice;
use alloc::vec::Vec;
use alloc::boxed::Box;

const AES_CMAC_KDF_ID: [u8; 2] = [1, 0];

pub type SgxDhMsg1 = sgx_dh_msg1_t;
pub type SgxDhMsg2 = sgx_dh_msg2_t;

/// Type for message body of the MSG3 structure used in DH secure session establishment.
#[derive(Clone, Default)]
pub struct SgxDhMsg3Body {
    pub report: sgx_report_t,
    pub additional_prop: Box<[u8]>,
}

/// Type for MSG3 used in DH secure session establishment.
#[derive(Clone, Default)]
pub struct SgxDhMsg3 {
    pub cmac: [u8; SGX_DH_MAC_SIZE],
    pub msg3_body: SgxDhMsg3Body,
}

impl SgxDhMsg3 {
    ///
    /// Create a SgxDhMsg3 with default values.
    ///
    pub fn new() -> Self {
        let dh_msg3 = SgxDhMsg3::default();
        dh_msg3
    }

    ///
    /// Calculate the size of sgx_dh_msg3_t converted from SgxDhMsg3, really add the size of struct sgx_dh_msg3_t and msg3_body.additional_prop.
    ///
    /// # Return value
    ///
    /// The size of sgx_dh_msg3_t needed.
    ///
    pub fn calc_raw_sealed_data_size(&self) -> u32 {

        let max = u32::max_value();
        let dh_msg3_size = mem::size_of::<sgx_dh_msg3_t>();
        let additional_prop_len = self.msg3_body.additional_prop.len();

        if additional_prop_len > (max as usize) - dh_msg3_size {
            return max;
        }

        (dh_msg3_size + additional_prop_len) as u32
    }

    ///
    /// Convert SgxDhMsg3 to sgx_dh_msg3_t, this is an unsafe function.
    ///
    /// # Parameters
    ///
    /// **p**
    ///
    /// The pointer of a sgx_dh_msg3_t buffer to save the buffer of SgxDhMsg3.
    ///
    /// **len**
    ///
    /// The size of the sgx_dh_msg3_t buffer.
    ///
    /// # Return value
    ///
    /// **Some(*mut sgx_dh_msg3_t)**
    ///
    /// Indicates the conversion is successfully. The return value is the mutable pointer of sgx_dh_msg3_t.
    ///
    /// **None**
    ///
    /// The parameters p and len are not available for the conversion.
    ///
    pub unsafe fn to_raw_dh_msg3_t(&self, p: * mut sgx_dh_msg3_t, len: u32) -> Option<* mut sgx_dh_msg3_t> {

        if p.is_null() {
            return None;
        }
        if rsgx_raw_is_within_enclave(p as * mut u8, len as usize) == false {
            return None;
        }

        let additional_prop_len = self.msg3_body.additional_prop.len();
        let dh_msg3_size = mem::size_of::<sgx_dh_msg3_t>();
        if additional_prop_len > u32::max_value() as usize - dh_msg3_size {
            return None;
        }
        if len < (dh_msg3_size + additional_prop_len) as u32 {
            return None;
        }

        let dh_msg3 = &mut *p;
        dh_msg3.cmac = self.cmac;
        dh_msg3.msg3_body.report = self.msg3_body.report;
        dh_msg3.msg3_body.additional_prop_length = additional_prop_len as u32;

        if additional_prop_len > 0 {
            let raw_msg3 = slice::from_raw_parts_mut(p as * mut u8, len as usize);
            raw_msg3[dh_msg3_size..].copy_from_slice(&self.msg3_body.additional_prop);
        }
        Some(p)
    }

    ///
    /// Convert sgx_dh_msg3_t to SgxDhMsg3, this is an unsafe function.
    ///
    /// # Parameters
    ///
    /// **p**
    ///
    /// The pointer of a sgx_dh_msg3_t buffer.
    ///
    /// **len**
    ///
    /// The size of the sgx_dh_msg3_t buffer.
    ///
    /// # Return value
    ///
    /// **Some(SgxDhMsg3)**
    ///
    /// Indicates the conversion is successfully. The return value is SgxDhMsg3.
    ///
    /// **None**
    ///
    /// The parameters p and len are not available for the conversion.
    ///
    pub unsafe fn from_raw_dh_msg3_t(p: * mut sgx_dh_msg3_t, len: u32) -> Option<Self> {

        if p.is_null() {
            return None;
        }
        if rsgx_raw_is_within_enclave(p as * mut u8, len as usize) == false {
            return None;
        }

        let raw_msg3 = &*p;
        let additional_prop_len = raw_msg3.msg3_body.additional_prop_length;
        let dh_msg3_size = mem::size_of::<sgx_dh_msg3_t>() as u32;
        if additional_prop_len > u32::max_value() - dh_msg3_size {
            return None;
        }
        if len < dh_msg3_size + additional_prop_len {
            return None;
        }

        let mut dh_msg3 = SgxDhMsg3::default();
        dh_msg3.cmac = raw_msg3.cmac;
        dh_msg3.msg3_body.report = raw_msg3.msg3_body.report;

        if additional_prop_len > 0 {
            let mut additional_prop: Vec<u8> = vec![0_u8; additional_prop_len as usize];
            let ptr_additional_prop = p.offset(1) as * const u8;
            ptr::copy_nonoverlapping(ptr_additional_prop, additional_prop.as_mut_ptr(), additional_prop_len as usize);
            dh_msg3.msg3_body.additional_prop = additional_prop.into_boxed_slice();
        }
        Some(dh_msg3)
    }
}

#[derive(Copy, Clone, PartialEq, Eq)]
enum SgxDhSessionState {
    SGX_DH_SESSION_STATE_ERROR,
    SGX_DH_SESSION_STATE_RESET,
    SGX_DH_SESSION_RESPONDER_WAIT_M2,
    SGX_DH_SESSION_INITIATOR_WAIT_M1,
    SGX_DH_SESSION_INITIATOR_WAIT_M3,
    SGX_DH_SESSION_ACTIVE,
}

/// DH secure session responder
#[derive(Copy, Clone)]
pub struct SgxDhResponder {
    state: SgxDhSessionState,
    prv_key: sgx_ec256_private_t,
    pub_key: sgx_ec256_public_t,
    smk_aek: sgx_key_128bit_t,
    shared_key: sgx_ec256_dh_shared_t,
}

impl Default for SgxDhResponder {
    fn default() -> Self {
        SgxDhResponder {
           state: SgxDhSessionState::SGX_DH_SESSION_STATE_RESET,
           prv_key: sgx_ec256_private_t::default(),
           pub_key: sgx_ec256_public_t::default(),
           smk_aek: sgx_key_128bit_t::default(),
           shared_key: sgx_ec256_dh_shared_t::default(),
        }
    }
}

unsafe impl ContiguousMemory for SgxDhResponder {}

impl SgxDhResponder {
    ///
    /// Initialize DH secure session responder.
    ///
    /// Indicates role of responder  the caller plays in the secure session establishment.
    ///
    /// The value of role of the responder of the session establishment must be `SGX_DH_SESSION_RESPONDER`.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    pub fn init_session() -> Self {
        Self::default()
    }
    ///
    /// Generates MSG1 for the responder of DH secure session establishment and records ECC key pair in session structure.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    /// # Parameters
    ///
    /// **msg1**
    ///
    /// A pointer to an SgxDhMsg1 msg1 buffer. The buffer holding the msg1
    /// message, which is referenced by this parameter, must be within the enclave.
    /// The DH msg1 contains the responder’s public key and report based target
    /// info.
    ///
    /// # Errors
    ///
    /// **SGX_ERROR_INVALID_PARAMETER**
    ///
    /// Any of the input parameters is incorrect.
    ///
    /// **SGX_ERROR_INVALID_STATE**
    ///
    /// The API is invoked in incorrect order or state.
    ///
    /// **SGX_ERROR_OUT_OF_MEMORY**
    ///
    /// The enclave is out of memory.
    ///
    /// **SGX_ERROR_UNEXPECTED**
    ///
    /// An unexpected error occurred.
    ///
    pub fn gen_msg1(&mut self, msg1: &mut SgxDhMsg1) -> SgxError {

        if rsgx_data_is_within_enclave(self) == false {
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if rsgx_data_is_within_enclave(msg1) == false {
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }

        if self.state != SgxDhSessionState::SGX_DH_SESSION_STATE_RESET {
            *self = Self::default();
            return Err(sgx_status_t::SGX_ERROR_INVALID_STATE);
        }

        let error = self.dh_generate_message1(msg1);
        match error {
            Err(mut ret) => {
                *self = Self::default();
                if ret != sgx_status_t::SGX_ERROR_OUT_OF_MEMORY {
                    ret = sgx_status_t::SGX_ERROR_UNEXPECTED;
                }
                return Err(ret);
            },
            _ => (),
        };

        self.state = SgxDhSessionState::SGX_DH_SESSION_RESPONDER_WAIT_M2;
        Ok(())
    }

    ///
    /// The responder handles msg2 sent by initiator and then derives AEK, updates session information and generates msg3.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    /// # Parameters
    ///
    /// **msg2**
    ///
    /// Point to dh message 2 buffer generated by session initiator, and the buffer must be in enclave address space.
    ///
    /// **msg3**
    ///
    /// Point to dh message 3 buffer generated by session responder in this function, and the buffer must be in enclave address space.
    ///
    /// **aek**
    ///
    /// A pointer that points to instance of sgx_key_128bit_t. The aek is derived as follows:
    ///
    /// ```
    /// KDK := CMAC(key0, LittleEndian(gab x-coordinate))
    /// AEK = AES-CMAC(KDK, 0x01||"AEK"||0x00||0x80||0x00)
    /// ```
    /// The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
    /// text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
    /// secret elliptic curve field element in Little Endian format.The plain text used
    /// in the AEK calculation includes:
    ///
    /// * a counter (0x01)
    ///
    /// * a label: the ASCII representation of the string 'AEK' in Little Endian format
    ///
    /// * a bit length (0x80)
    ///
    /// **initiator_identity**
    ///
    /// A pointer that points to instance of sgx_dh_session_enclave_identity_t.
    /// Identity information of initiator includes isv svn, isv product id, the
    /// enclave attributes, MRSIGNER, and MRENCLAVE. The buffer must be in
    /// enclave address space. The caller should check the identity of the peer and
    /// decide whether to trust the peer and use the aek.
    ///
    /// # Errors
    ///
    /// **SGX_ERROR_INVALID_PARAMETER**
    ///
    /// Any of the input parameters is incorrect.
    ///
    /// **SGX_ERROR_INVALID_STATE**
    ///
    /// The API is invoked in incorrect order or state.
    ///
    /// **SGX_ERROR_KDF_MISMATCH**
    ///
    /// Indicates the key derivation function does not match.
    ///
    /// **SGX_ERROR_OUT_OF_MEMORY**
    ///
    /// The enclave is out of memory.
    ///
    /// **SGX_ERROR_UNEXPECTED**
    ///
    /// An unexpected error occurred.
    ///
    pub fn proc_msg2(&mut self,
                     msg2: &SgxDhMsg2,
                     msg3: &mut SgxDhMsg3,
                     aek: &mut sgx_key_128bit_t,
                     initiator_identity: &mut sgx_dh_session_enclave_identity_t) -> SgxError {

        if rsgx_data_is_within_enclave(self) == false {
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if (rsgx_data_is_within_enclave(msg2) == false) ||
           (rsgx_data_is_within_enclave(aek) == false) ||
           (rsgx_data_is_within_enclave(initiator_identity) == false) ||
           (rsgx_raw_is_within_enclave(msg3 as * const _ as * const u8, mem::size_of::<SgxDhMsg3>()) == false) {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if msg3.msg3_body.additional_prop.len() > 0 {
            if (rsgx_slice_is_within_enclave(&msg3.msg3_body.additional_prop) == false) ||
               (msg3.msg3_body.additional_prop.len() > (u32::max_value() as usize) - mem::size_of::<sgx_dh_msg3_t>()) {
                *self = Self::default();
                self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
                return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
            }
        }

        if self.state != SgxDhSessionState::SGX_DH_SESSION_RESPONDER_WAIT_M2 {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_STATE);
        }

        let ecc_state = SgxEccHandle::new();
        try!(ecc_state.open().map_err(|ret| self.set_error(ret)));
        self.shared_key = try!(ecc_state.compute_shared_dhkey(&self.prv_key, &msg2.g_b).map_err(|ret| self.set_error(ret)));

        self.smk_aek = try!(derive_key(&self.shared_key, &EC_SMK_LABEL).map_err(|ret| self.set_error(ret)));

        try!(self.dh_verify_message2(msg2).map_err(|ret| self.set_error(ret)));

        initiator_identity.isv_svn = msg2.report.body.isv_svn;
        initiator_identity.isv_prod_id = msg2.report.body.isv_prod_id;
        initiator_identity.attributes = msg2.report.body.attributes;
        initiator_identity.mr_signer = msg2.report.body.mr_signer;
        initiator_identity.mr_enclave = msg2.report.body.mr_enclave;

        try!(self.dh_generate_message3(msg2, msg3).map_err(|ret| self.set_error(ret)));

        * aek = try!(derive_key(&self.shared_key, &EC_AEK_LABEL).map_err(|ret| self.set_error(ret)));

        *self = Self::default();
        self.state = SgxDhSessionState::SGX_DH_SESSION_ACTIVE;

        Ok(())
    }

    fn dh_generate_message1(&mut self, msg1: &mut SgxDhMsg1) -> SgxError {

        let target = sgx_target_info_t::default();
        let report_data = sgx_report_data_t::default();

        let report = try!(rsgx_create_report(&target, &report_data));

        msg1.target.mr_enclave = report.body.mr_enclave;
        msg1.target.attributes = report.body.attributes;
        msg1.target.misc_select = report.body.misc_select;

        let ecc_state = SgxEccHandle::new();
        try!(ecc_state.open());
        let (prv_key, pub_key) = try!(ecc_state.create_key_pair());

        self.prv_key = prv_key;
        self.pub_key = pub_key;
        msg1.g_a = pub_key;

        Ok(())
    }

    fn dh_verify_message2(&self, msg2: &SgxDhMsg2) -> SgxError {

        let kdf_id = &msg2.report.body.report_data.d[SGX_SHA256_HASH_SIZE..SGX_SHA256_HASH_SIZE + 2];
        let data_hash = &msg2.report.body.report_data.d[..SGX_SHA256_HASH_SIZE];

        if kdf_id.eq(&AES_CMAC_KDF_ID) == false {
            return Err(sgx_status_t::SGX_ERROR_KDF_MISMATCH);
        }

        let report = msg2.report;
        let data_mac = try!(rsgx_rijndael128_cmac_msg(&self.smk_aek, &report));
        if data_mac.consttime_memeq(&msg2.cmac) == false {
            return Err(sgx_status_t::SGX_ERROR_MAC_MISMATCH);
        }

        try!(rsgx_verify_report(&report));

        let sha_handle = SgxShaHandle::new();
        try!(sha_handle.init());
        try!(sha_handle.update_msg(&self.pub_key));
        try!(sha_handle.update_msg(&msg2.g_b));
        let msg_hash = try!(sha_handle.get_hash());

        if msg_hash.eq(data_hash) == false {
            return Err(sgx_status_t::SGX_ERROR_MAC_MISMATCH);
        }

        Ok(())
    }

    fn dh_generate_message3(&self, msg2: &SgxDhMsg2, msg3: &mut SgxDhMsg3) -> SgxError {

        msg3.cmac = Default::default();
        msg3.msg3_body.report = Default::default();

        let sha_handle = SgxShaHandle::new();
        try!(sha_handle.init());
        try!(sha_handle.update_msg(&msg2.g_b));
        try!(sha_handle.update_msg(&self.pub_key));
        let msg_hash = try!(sha_handle.get_hash());

        let mut target = sgx_target_info_t::default();
        let mut report_data = sgx_report_data_t::default();

        report_data.d[..SGX_SHA256_HASH_SIZE].copy_from_slice(&msg_hash);
        target.attributes = msg2.report.body.attributes;
        target.mr_enclave = msg2.report.body.mr_enclave;
        target.misc_select = msg2.report.body.misc_select;
        msg3.msg3_body.report = try!(rsgx_create_report(&target, &report_data));

        let add_prop_len = msg3.msg3_body.additional_prop.len() as u32;
        let cmac_handle = SgxCmacHandle::new();
        try!(cmac_handle.init(&self.smk_aek));
        try!(cmac_handle.update_msg(&msg3.msg3_body.report));
        try!(cmac_handle.update_msg(&add_prop_len));
        if add_prop_len > 0 {
            try!(cmac_handle.update_slice(&msg3.msg3_body.additional_prop));
        }
        msg3.cmac = try!(cmac_handle.get_hash());

        Ok(())
    }

    fn set_error(&mut self, sgx_ret: sgx_status_t) -> sgx_status_t {

        *self = Self::default();
        self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
        let ret = match sgx_ret {
            sgx_status_t::SGX_ERROR_OUT_OF_MEMORY => sgx_status_t::SGX_ERROR_OUT_OF_MEMORY,
            sgx_status_t::SGX_ERROR_KDF_MISMATCH => sgx_status_t::SGX_ERROR_KDF_MISMATCH,
            _ => sgx_status_t::SGX_ERROR_UNEXPECTED,
        };
        ret
    }
}

/// DH secure session Initiator
#[derive(Copy, Clone)]
pub struct SgxDhInitiator {
    state: SgxDhSessionState,
    smk_aek: sgx_key_128bit_t,
    pub_key: sgx_ec256_public_t,
    peer_pub_key: sgx_ec256_public_t,
    shared_key: sgx_ec256_dh_shared_t,
}

impl Default for SgxDhInitiator {
    fn default() -> Self {
        SgxDhInitiator {
           state: SgxDhSessionState::SGX_DH_SESSION_INITIATOR_WAIT_M1,
           smk_aek: sgx_key_128bit_t::default(),
           pub_key: sgx_ec256_public_t::default(),
           peer_pub_key: sgx_ec256_public_t::default(),
           shared_key: sgx_ec256_dh_shared_t::default(),
        }
    }
}

unsafe impl ContiguousMemory for SgxDhInitiator {}

impl SgxDhInitiator {
    ///
    /// Initialize DH secure session Initiator.
    ///
    /// Indicates role of initiator the caller plays in the secure session establishment.
    ///
    /// The value of role of the initiator of the session establishment must be `SGX_DH_SESSION_INITIATOR`.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    pub fn init_session() -> Self {
        Self::default()
    }

    ///
    /// The initiator of DH secure session establishment handles msg1 sent by responder and then generates msg2,
    /// and records initiator’s ECC key pair in DH session structure.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    /// # Parameters
    ///
    /// **msg1**
    ///
    /// Point to dh message 1 buffer generated by session responder, and the buffer must be in enclave address space.
    ///
    /// **msg2**
    ///
    /// Point to dh message 2 buffer, and the buffer must be in enclave address space.
    ///
    /// # Errors
    ///
    /// **SGX_ERROR_INVALID_PARAMETER**
    ///
    /// Any of the input parameters is incorrect.
    ///
    /// **SGX_ERROR_INVALID_STATE**
    ///
    /// The API is invoked in incorrect order or state.
    ///
    /// **SGX_ERROR_OUT_OF_MEMORY**
    ///
    /// The enclave is out of memory.
    ///
    /// **SGX_ERROR_UNEXPECTED**
    ///
    /// An unexpected error occurred.
    ///
    pub fn proc_msg1(&mut self, msg1: &SgxDhMsg1, msg2: &mut SgxDhMsg2) -> SgxError {

        if rsgx_data_is_within_enclave(self) == false {
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if (rsgx_data_is_within_enclave(msg1) == false) ||
           (rsgx_data_is_within_enclave(msg2) == false) {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }

        if self.state != SgxDhSessionState::SGX_DH_SESSION_INITIATOR_WAIT_M1 {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_STATE);
        }

        let ecc_state = SgxEccHandle::new();
        try!(ecc_state.open().map_err(|ret| self.set_error(ret)));
        let (mut prv_key, pub_key) = try!(ecc_state.create_key_pair().map_err(|ret| self.set_error(ret)));
        self.shared_key = try!(ecc_state.compute_shared_dhkey(&prv_key, &msg1.g_a).map_err(|ret| self.set_error(ret)));

        prv_key = sgx_ec256_private_t::default();
        self.pub_key = pub_key;
        self.smk_aek = try!(derive_key(&self.shared_key, &EC_SMK_LABEL).map_err(|ret| self.set_error(ret)));
        try!(self.dh_generate_message2(msg1, msg2).map_err(|ret| self.set_error(ret)));

        self.peer_pub_key = msg1.g_a;
        self.state = SgxDhSessionState::SGX_DH_SESSION_INITIATOR_WAIT_M3;

        Ok(())
    }

    ///
    /// The initiator handles msg3 sent by responder and then derives AEK, updates
    /// session information and gets responder’s identity information.
    ///
    /// # Requirements
    ///
    /// Library: libsgx_tservice.a or libsgx_tservice_sim.a (simulation)
    ///
    /// # Parameters
    ///
    /// **msg3**
    ///
    /// Point to dh message 3 buffer generated by session responder, and the buffer must be in enclave address space.
    ///
    /// **aek**
    ///
    /// A pointer that points to instance of sgx_key_128bit_t. The aek is derived as follows:
    ///
    /// ```
    /// KDK:= CMAC(key0, LittleEndian(gab x-coordinate))
    /// AEK = AES-CMAC(KDK, 0x01||"AEK"||0x00||0x80||0x00)
    /// ```
    ///
    /// The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
    /// text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
    /// secret elliptic curve field element in Little Endian format.
    /// The plain text used in the AEK calculation includes:
    ///
    /// * a counter (0x01)
    ///
    /// * a label: the ASCII representation of the string 'AEK' in Little Endian format
    ///
    /// * a bit length (0x80)
    ///
    /// **responder_identity**
    ///
    /// Identity information of responder including isv svn, isv product id, the enclave
    /// attributes, MRSIGNER, and MRENCLAVE. The buffer must be in enclave address space.
    /// The caller should check the identity of the peer and decide whether to trust the
    /// peer and use the aek or the msg3_body.additional_prop field of msg3.
    ///
    /// # Errors
    ///
    /// **SGX_ERROR_INVALID_PARAMETER**
    ///
    /// Any of the input parameters is incorrect.
    ///
    /// **SGX_ERROR_INVALID_STATE**
    ///
    /// The API is invoked in incorrect order or state.
    ///
    /// **SGX_ERROR_OUT_OF_MEMORY**
    ///
    /// The enclave is out of memory.
    ///
    /// **SGX_ERROR_UNEXPECTED**
    ///
    /// An unexpected error occurred.
    ///
    pub fn proc_msg3(&mut self,
                     msg3: &SgxDhMsg3,
                     aek: &mut sgx_key_128bit_t,
                     responder_identity: &mut sgx_dh_session_enclave_identity_t) -> SgxError {

        if rsgx_data_is_within_enclave(self) == false {
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if (rsgx_raw_is_within_enclave(msg3 as * const _ as * const u8, mem::size_of::<SgxDhMsg3>()) == false) ||
           (rsgx_data_is_within_enclave(aek) == false) ||
           (rsgx_data_is_within_enclave(responder_identity) == false) {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
        }
        if msg3.msg3_body.additional_prop.len() > 0 {
            if (rsgx_slice_is_within_enclave(&msg3.msg3_body.additional_prop) == false) ||
               (msg3.msg3_body.additional_prop.len() > (u32::max_value() as usize) - mem::size_of::<sgx_dh_msg3_t>()) {
                *self = Self::default();
                self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
                return Err(sgx_status_t::SGX_ERROR_INVALID_PARAMETER);
            }
        }

        if self.state != SgxDhSessionState::SGX_DH_SESSION_INITIATOR_WAIT_M3 {
            *self = Self::default();
            self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
            return Err(sgx_status_t::SGX_ERROR_INVALID_STATE);
        }

        try!(self.dh_verify_message3(msg3).map_err(|ret| self.set_error(ret)));
        * aek = try!(derive_key(&self.shared_key, &EC_AEK_LABEL).map_err(|ret| self.set_error(ret)));

        *self = Self::default();
        self.state = SgxDhSessionState::SGX_DH_SESSION_ACTIVE;

        responder_identity.cpu_svn = msg3.msg3_body.report.body.cpu_svn;
        responder_identity.misc_select = msg3.msg3_body.report.body.misc_select;
        responder_identity.isv_svn = msg3.msg3_body.report.body.isv_svn;
        responder_identity.isv_prod_id = msg3.msg3_body.report.body.isv_prod_id;
        responder_identity.attributes = msg3.msg3_body.report.body.attributes;
        responder_identity.mr_signer = msg3.msg3_body.report.body.mr_signer;
        responder_identity.mr_enclave = msg3.msg3_body.report.body.mr_enclave;

        Ok(())
    }

    fn dh_generate_message2(&self, msg1: &SgxDhMsg1, msg2: &mut SgxDhMsg2) -> SgxError {

        msg2.report = Default::default();
        msg2.cmac = Default::default();
        msg2.g_b = self.pub_key;

        let sha_handle = SgxShaHandle::new();
        try!(sha_handle.init());
        try!(sha_handle.update_msg(&msg1.g_a));
        try!(sha_handle.update_msg(&msg2.g_b));
        let msg_hash = try!(sha_handle.get_hash());

        let mut report_data = sgx_report_data_t::default();
        report_data.d[..SGX_SHA256_HASH_SIZE].copy_from_slice(&msg_hash);
        report_data.d[SGX_SHA256_HASH_SIZE..SGX_SHA256_HASH_SIZE + 2].copy_from_slice(&AES_CMAC_KDF_ID);

        let target = msg1.target;
        msg2.report = try!(rsgx_create_report(&target, &report_data));
        let report = msg2.report;
        msg2.cmac = try!(rsgx_rijndael128_cmac_msg(&self.smk_aek, &report));

        Ok(())
    }

    fn dh_verify_message3(&self, msg3: &SgxDhMsg3) -> SgxError {

        let add_prop_len = msg3.msg3_body.additional_prop.len() as u32;

        let cmac_handle = SgxCmacHandle::new();
        try!(cmac_handle.init(&self.smk_aek));
        try!(cmac_handle.update_msg(&msg3.msg3_body.report));
        try!(cmac_handle.update_msg(&add_prop_len));
        if add_prop_len > 0 {
            try!(cmac_handle.update_slice(&msg3.msg3_body.additional_prop));
        }
        let data_mac = try!(cmac_handle.get_hash());

        if data_mac.consttime_memeq(&msg3.cmac) == false {
            return Err(sgx_status_t::SGX_ERROR_MAC_MISMATCH);
        }

        try!(rsgx_verify_report(&msg3.msg3_body.report));

        let sha_handle = SgxShaHandle::new();
        try!(sha_handle.init());
        try!(sha_handle.update_msg(&self.pub_key));
        try!(sha_handle.update_msg(&self.peer_pub_key));
        let msg_hash = try!(sha_handle.get_hash());

        let data_hash = &msg3.msg3_body.report.body.report_data.d[..SGX_SHA256_HASH_SIZE];
        if msg_hash.eq(data_hash) == false {
            return Err(sgx_status_t::SGX_ERROR_MAC_MISMATCH);
        }

        Ok(())
    }

    fn set_error(&mut self, sgx_ret: sgx_status_t) -> sgx_status_t {

        *self = Self::default();
        self.state = SgxDhSessionState::SGX_DH_SESSION_STATE_ERROR;
        let ret = match sgx_ret {
            sgx_status_t::SGX_ERROR_OUT_OF_MEMORY => sgx_status_t::SGX_ERROR_OUT_OF_MEMORY,
            _ => sgx_status_t::SGX_ERROR_UNEXPECTED,
        };
        ret
    }
}