1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // * Neither the name of Baidu, Inc., nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //! Temporal quantification. use core::fmt; use core::ops::{Add, Sub, AddAssign, SubAssign}; use error::Error; use sys::time; use sys_common::FromInner; pub use self::duration::Duration; mod duration; /// A measurement of a monotonically nondecreasing clock. /// Opaque and useful only with `Duration`. /// /// Instants are always guaranteed to be no less than any previously measured /// instant when created, and are often useful for tasks such as measuring /// benchmarks or timing how long an operation takes. /// /// Note, however, that instants are not guaranteed to be **steady**. In other /// words, each tick of the underlying clock may not be the same length (e.g. /// some seconds may be longer than others). An instant may jump forwards or /// experience time dilation (slow down or speed up), but it will never go /// backwards. /// /// Instants are opaque types that can only be compared to one another. There is /// no method to get "the number of seconds" from an instant. Instead, it only /// allows measuring the duration between two instants (or comparing two /// instants). /// /// The size of an `Instant` struct may vary depending on the target operating /// system. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Instant(time::Instant); /// A measurement of the system clock, useful for talking to /// external entities like the file system or other processes. /// /// Distinct from the [`Instant`] type, this time measurement **is not /// monotonic**. This means that you can save a file to the file system, then /// save another file to the file system, **and the second file has a /// `SystemTime` measurement earlier than the first**. In other words, an /// operation that happens after another operation in real time may have an /// earlier `SystemTime`! /// /// Consequently, comparing two `SystemTime` instances to learn about the /// duration between them returns a [`Result`] instead of an infallible [`Duration`] /// to indicate that this sort of time drift may happen and needs to be handled. /// /// Although a `SystemTime` cannot be directly inspected, the [`UNIX_EPOCH`] /// constant is provided in this module as an anchor in time to learn /// information about a `SystemTime`. By calculating the duration from this /// fixed point in time, a `SystemTime` can be converted to a human-readable time, /// or perhaps some other string representation. /// /// The size of a `SystemTime` struct may vary depending on the target operating /// system. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SystemTime(time::SystemTime); /// An error returned from the `duration_since` and `elapsed` methods on /// `SystemTime`, used to learn how far in the opposite direction a system time /// lies. /// #[derive(Clone, Debug)] pub struct SystemTimeError(Duration); impl Instant { /// Returns an instant corresponding to "now". /// #[cfg(feature = "untrusted_time")] pub fn now() -> Instant { Instant(time::Instant::now()) } /// Returns the amount of time elapsed from another instant to this one. /// /// # Panics /// /// This function will panic if `earlier` is later than `self`. /// pub fn duration_since(&self, earlier: Instant) -> Duration { self.0.sub_instant(&earlier.0) } /// Returns the amount of time elapsed since this instant was created. /// /// # Panics /// /// This function may panic if the current time is earlier than this /// instant, which is something that can happen if an `Instant` is /// produced synthetically. /// #[cfg(feature = "untrusted_time")] pub fn elapsed(&self) -> Duration { Instant::now() - *self } } impl Add<Duration> for Instant { type Output = Instant; fn add(self, other: Duration) -> Instant { Instant(self.0.add_duration(&other)) } } impl AddAssign<Duration> for Instant { fn add_assign(&mut self, other: Duration) { *self = *self + other; } } impl Sub<Duration> for Instant { type Output = Instant; fn sub(self, other: Duration) -> Instant { Instant(self.0.sub_duration(&other)) } } impl SubAssign<Duration> for Instant { fn sub_assign(&mut self, other: Duration) { *self = *self - other; } } impl Sub<Instant> for Instant { type Output = Duration; fn sub(self, other: Instant) -> Duration { self.duration_since(other) } } impl fmt::Debug for Instant { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } impl SystemTime { /// An anchor in time which can be used to create new `SystemTime` instances or /// learn about where in time a `SystemTime` lies. /// /// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with /// respect to the system clock. Using `duration_since` on an existing /// `SystemTime` instance can tell how far away from this point in time a /// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a /// `SystemTime` instance to represent another fixed point in time. /// pub const UNIX_EPOCH: SystemTime = UNIX_EPOCH; /// Returns the system time corresponding to "now". /// #[cfg(feature = "untrusted_time")] pub fn now() -> SystemTime { SystemTime(time::SystemTime::now()) } /// Returns the amount of time elapsed from an earlier point in time. /// /// This function may fail because measurements taken earlier are not /// guaranteed to always be before later measurements (due to anomalies such /// as the system clock being adjusted either forwards or backwards). /// /// If successful, [`Ok`]`(`[`Duration`]`)` is returned where the duration represents /// the amount of time elapsed from the specified measurement to this one. /// /// Returns an [`Err`] if `earlier` is later than `self`, and the error /// contains how far from `self` the time is. /// pub fn duration_since(&self, earlier: SystemTime) -> Result<Duration, SystemTimeError> { self.0.sub_time(&earlier.0).map_err(SystemTimeError) } /// Returns the amount of time elapsed since this system time was created. /// /// This function may fail as the underlying system clock is susceptible to /// drift and updates (e.g. the system clock could go backwards), so this /// function may not always succeed. If successful, [`Ok`]`(`[`Duration`]`)` is /// returned where the duration represents the amount of time elapsed from /// this time measurement to the current time. /// /// Returns an [`Err`] if `self` is later than the current system time, and /// the error contains how far from the current system time `self` is. /// #[cfg(feature = "untrusted_time")] pub fn elapsed(&self) -> Result<Duration, SystemTimeError> { SystemTime::now().duration_since(*self) } } impl Add<Duration> for SystemTime { type Output = SystemTime; fn add(self, dur: Duration) -> SystemTime { SystemTime(self.0.add_duration(&dur)) } } impl AddAssign<Duration> for SystemTime { fn add_assign(&mut self, other: Duration) { *self = *self + other; } } impl Sub<Duration> for SystemTime { type Output = SystemTime; fn sub(self, dur: Duration) -> SystemTime { SystemTime(self.0.sub_duration(&dur)) } } impl SubAssign<Duration> for SystemTime { fn sub_assign(&mut self, other: Duration) { *self = *self - other; } } impl fmt::Debug for SystemTime { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { self.0.fmt(f) } } /// An anchor in time which can be used to create new `SystemTime` instances or /// learn about where in time a `SystemTime` lies. /// /// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with /// respect to the system clock. Using `duration_since` on an existing /// [`SystemTime`] instance can tell how far away from this point in time a /// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a /// [`SystemTime`] instance to represent another fixed point in time. /// pub const UNIX_EPOCH: SystemTime = SystemTime(time::UNIX_EPOCH); impl SystemTimeError { /// Returns the positive duration which represents how far forward the /// second system time was from the first. /// /// A `SystemTimeError` is returned from the [`duration_since`] and [`elapsed`] /// methods of [`SystemTime`] whenever the second system time represents a point later /// in time than the `self` of the method call. /// pub fn duration(&self) -> Duration { self.0 } } impl Error for SystemTimeError { fn description(&self) -> &str { "other time was not earlier than self" } } impl fmt::Display for SystemTimeError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "second time provided was later than self") } } impl FromInner<time::SystemTime> for SystemTime { fn from_inner(time: time::SystemTime) -> SystemTime { SystemTime(time) } }