1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
//  * Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
//  * Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in
//    the documentation and/or other materials provided with the
//    distribution.
//  * Neither the name of Baidu, Inc., nor the names of its
//    contributors may be used to endorse or promote products derived
//    from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

use sgx_trts::libc as c;
use core::cmp::Ordering;
use core::fmt;
use core::hash;
use core::mem;
use net::{hton, ntoh};
use sys_common::{AsInner, FromInner};

/// An IP address, either IPv4 or IPv6.
///
/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
/// respective documentation for more details.
///
/// The size of an `IpAddr` instance may vary depending on the target operating
/// system.
///
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr {
    /// An IPv4 address.
    V4(Ipv4Addr),
    /// An IPv6 address.
    V6(Ipv6Addr),
}

/// An IPv4 address.
///
/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
/// They are usually represented as four octets.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv4Addr` struct may vary depending on the target operating
/// system.
///
#[derive(Copy)]
pub struct Ipv4Addr {
    inner: c::in_addr,
}

/// An IPv6 address.
///
/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
/// They are usually represented as eight 16-bit segments.
///
/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
///
/// The size of an `Ipv6Addr` struct may vary depending on the target operating
/// system.
///
#[derive(Copy)]
pub struct Ipv6Addr {
    inner: c::in6_addr,
}

#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
    InterfaceLocal,
    LinkLocal,
    RealmLocal,
    AdminLocal,
    SiteLocal,
    OrganizationLocal,
    Global
}

impl IpAddr {
    /// Returns [`true`] for the special 'unspecified' address.
    ///
    /// See the documentation for [`Ipv4Addr::is_unspecified`][IPv4] and
    /// [`Ipv6Addr::is_unspecified`][IPv6] for more details.
    ///
    pub fn is_unspecified(&self) -> bool {
        match *self {
            IpAddr::V4(ref a) => a.is_unspecified(),
            IpAddr::V6(ref a) => a.is_unspecified(),
        }
    }

    /// Returns [`true`] if this is a loopback address.
    ///
    /// See the documentation for [`Ipv4Addr::is_loopback`][IPv4] and
    /// [`Ipv6Addr::is_loopback`][IPv6] for more details.
    ///
    pub fn is_loopback(&self) -> bool {
        match *self {
            IpAddr::V4(ref a) => a.is_loopback(),
            IpAddr::V6(ref a) => a.is_loopback(),
        }
    }

    /// Returns [`true`] if the address appears to be globally routable.
    ///
    /// See the documentation for [`Ipv4Addr::is_global`][IPv4] and
    /// [`Ipv6Addr::is_global`][IPv6] for more details.
    ///
    pub fn is_global(&self) -> bool {
        match *self {
            IpAddr::V4(ref a) => a.is_global(),
            IpAddr::V6(ref a) => a.is_global(),
        }
    }

    /// Returns [`true`] if this is a multicast address.
    ///
    /// See the documentation for [`Ipv4Addr::is_multicast`][IPv4] and
    /// [`Ipv6Addr::is_multicast`][IPv6] for more details.
    ///
    pub fn is_multicast(&self) -> bool {
        match *self {
            IpAddr::V4(ref a) => a.is_multicast(),
            IpAddr::V6(ref a) => a.is_multicast(),
        }
    }

    /// Returns [`true`] if this address is in a range designated for documentation.
    ///
    /// See the documentation for [`Ipv4Addr::is_documentation`][IPv4] and
    /// [`Ipv6Addr::is_documentation`][IPv6] for more details.
    ///
    pub fn is_documentation(&self) -> bool {
        match *self {
            IpAddr::V4(ref a) => a.is_documentation(),
            IpAddr::V6(ref a) => a.is_documentation(),
        }
    }

    /// Returns [`true`] if this address is an [IPv4 address], and [`false`] otherwise.
    ///
    pub fn is_ipv4(&self) -> bool {
        match *self {
            IpAddr::V4(_) => true,
            IpAddr::V6(_) => false,
        }
    }

    /// Returns [`true`] if this address is an [IPv6 address], and [`false`] otherwise.
    ///
    pub fn is_ipv6(&self) -> bool {
        match *self {
            IpAddr::V4(_) => false,
            IpAddr::V6(_) => true,
        }
    }
}

impl Ipv4Addr {
    /// Creates a new IPv4 address from four eight-bit octets.
    ///
    /// The result will represent the IP address `a`.`b`.`c`.`d`.
    ///
    pub fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
        Ipv4Addr {
            inner: c::in_addr {
                s_addr: hton(((a as u32) << 24) |
                             ((b as u32) << 16) |
                             ((c as u32) <<  8) |
                              (d as u32)),
            }
        }
    }

    /// Creates a new IPv4 address with the address pointing to localhost: 127.0.0.1.
    ///
    pub fn localhost() -> Ipv4Addr {
        Ipv4Addr::new(127, 0, 0, 1)
    }

    /// Creates a new IPv4 address representing an unspecified address: 0.0.0.0
    ///
    pub fn unspecified() -> Ipv4Addr {
        Ipv4Addr::new(0, 0, 0, 0)
    }

    /// Returns the four eight-bit integers that make up this address.
    ///
    pub fn octets(&self) -> [u8; 4] {
        let bits = ntoh(self.inner.s_addr);
        [(bits >> 24) as u8, (bits >> 16) as u8, (bits >> 8) as u8, bits as u8]
    }

    /// Returns [`true`] for the special 'unspecified' address (0.0.0.0).
    ///
    /// This property is defined in _UNIX Network Programming, Second Edition_,
    /// W. Richard Stevens, p. 891; see also [ip7].
    ///
    pub fn is_unspecified(&self) -> bool {
        self.inner.s_addr == 0
    }

    /// Returns [`true`] if this is a loopback address (127.0.0.0/8).
    ///
    /// This property is defined by [IETF RFC 1122].
    ///
    pub fn is_loopback(&self) -> bool {
        self.octets()[0] == 127
    }

    /// Returns [`true`] if this is a private address.
    ///
    /// The private address ranges are defined in [IETF RFC 1918] and include:
    ///
    ///  - 10.0.0.0/8
    ///  - 172.16.0.0/12
    ///  - 192.168.0.0/16
    ///
    pub fn is_private(&self) -> bool {
        match (self.octets()[0], self.octets()[1]) {
            (10, _) => true,
            (172, b) if b >= 16 && b <= 31 => true,
            (192, 168) => true,
            _ => false
        }
    }

    /// Returns [`true`] if the address is link-local (169.254.0.0/16).
    ///
    /// This property is defined by [IETF RFC 3927].
    ///
    pub fn is_link_local(&self) -> bool {
        self.octets()[0] == 169 && self.octets()[1] == 254
    }

    /// Returns [`true`] if the address appears to be globally routable.
    /// See [iana-ipv4-special-registry][ipv4-sr].
    ///
    /// The following return false:
    ///
    /// - private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
    /// - the loopback address (127.0.0.0/8)
    /// - the link-local address (169.254.0.0/16)
    /// - the broadcast address (255.255.255.255/32)
    /// - test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
    /// - the unspecified address (0.0.0.0)
    ///
    /// [ipv4-sr]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
    /// [`true`]: ../../std/primitive.bool.html
    ///
    pub fn is_global(&self) -> bool {
        !self.is_private() && !self.is_loopback() && !self.is_link_local() &&
        !self.is_broadcast() && !self.is_documentation() && !self.is_unspecified()
    }

    /// Returns [`true`] if this is a multicast address (224.0.0.0/4).
    ///
    /// Multicast addresses have a most significant octet between 224 and 239,
    /// and is defined by [IETF RFC 5771].
    ///
    pub fn is_multicast(&self) -> bool {
        self.octets()[0] >= 224 && self.octets()[0] <= 239
    }

    /// Returns [`true`] if this is a broadcast address (255.255.255.255).
    ///
    /// A broadcast address has all octets set to 255 as defined in [IETF RFC 919].
    ///
    pub fn is_broadcast(&self) -> bool {
        self.octets()[0] == 255 && self.octets()[1] == 255 &&
        self.octets()[2] == 255 && self.octets()[3] == 255
    }

    /// Returns [`true`] if this address is in a range designated for documentation.
    ///
    /// This is defined in [IETF RFC 5737]:
    ///
    /// - 192.0.2.0/24 (TEST-NET-1)
    /// - 198.51.100.0/24 (TEST-NET-2)
    /// - 203.0.113.0/24 (TEST-NET-3)
    ///
    pub fn is_documentation(&self) -> bool {
        match(self.octets()[0], self.octets()[1], self.octets()[2], self.octets()[3]) {
            (192, 0, 2, _) => true,
            (198, 51, 100, _) => true,
            (203, 0, 113, _) => true,
            _ => false
        }
    }

    /// Converts this address to an IPv4-compatible [IPv6 address].
    ///
    /// a.b.c.d becomes ::a.b.c.d
    ///
    pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
        Ipv6Addr::new(0, 0, 0, 0, 0, 0,
                      ((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
                      ((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
    }

    /// Converts this address to an IPv4-mapped [IPv6 address].
    ///
    /// a.b.c.d becomes ::ffff:a.b.c.d
    ///
    pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
        Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff,
                      ((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
                      ((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
    }
}

impl fmt::Display for IpAddr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            IpAddr::V4(ref a) => a.fmt(fmt),
            IpAddr::V6(ref a) => a.fmt(fmt),
        }
    }
}

impl From<Ipv4Addr> for IpAddr {
    fn from(ipv4: Ipv4Addr) -> IpAddr {
        IpAddr::V4(ipv4)
    }
}

impl From<Ipv6Addr> for IpAddr {
    fn from(ipv6: Ipv6Addr) -> IpAddr {
        IpAddr::V6(ipv6)
    }
}

impl fmt::Display for Ipv4Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        let octets = self.octets();
        write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
    }
}

impl fmt::Debug for Ipv4Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(self, fmt)
    }
}

impl Clone for Ipv4Addr {
    fn clone(&self) -> Ipv4Addr { *self }
}

impl PartialEq for Ipv4Addr {
    fn eq(&self, other: &Ipv4Addr) -> bool {
        self.inner.s_addr == other.inner.s_addr
    }
}

impl PartialEq<Ipv4Addr> for IpAddr {
    fn eq(&self, other: &Ipv4Addr) -> bool {
        match *self {
            IpAddr::V4(ref v4) => v4 == other,
            IpAddr::V6(_) => false,
        }
    }
}

impl PartialEq<IpAddr> for Ipv4Addr {
    fn eq(&self, other: &IpAddr) -> bool {
        match *other {
            IpAddr::V4(ref v4) => self == v4,
            IpAddr::V6(_) => false,
        }
    }
}

impl Eq for Ipv4Addr {}

impl hash::Hash for Ipv4Addr {
    fn hash<H: hash::Hasher>(&self, s: &mut H) {
        // `inner` is #[repr(packed)], so we need to copy `s_addr`.
        {self.inner.s_addr}.hash(s)
    }
}

impl PartialOrd for Ipv4Addr {
    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialOrd<Ipv4Addr> for IpAddr {
    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
        match *self {
            IpAddr::V4(ref v4) => v4.partial_cmp(other),
            IpAddr::V6(_) => Some(Ordering::Greater),
        }
    }
}

impl PartialOrd<IpAddr> for Ipv4Addr {
    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
        match *other {
            IpAddr::V4(ref v4) => self.partial_cmp(v4),
            IpAddr::V6(_) => Some(Ordering::Less),
        }
    }
}

impl Ord for Ipv4Addr {
    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
        ntoh(self.inner.s_addr).cmp(&ntoh(other.inner.s_addr))
    }
}

impl AsInner<c::in_addr> for Ipv4Addr {
    fn as_inner(&self) -> &c::in_addr { &self.inner }
}
impl FromInner<c::in_addr> for Ipv4Addr {
    fn from_inner(addr: c::in_addr) -> Ipv4Addr {
        Ipv4Addr { inner: addr }
    }
}

impl From<Ipv4Addr> for u32 {
    /// Convert an `Ipv4Addr` into a host byte order `u32`.
    ///
    fn from(ip: Ipv4Addr) -> u32 {
        let ip = ip.octets();
        ((ip[0] as u32) << 24) + ((ip[1] as u32) << 16) + ((ip[2] as u32) << 8) + (ip[3] as u32)
    }
}

impl From<u32> for Ipv4Addr {
    /// Convert a host byte order `u32` into an `Ipv4Addr`.
    ///
    fn from(ip: u32) -> Ipv4Addr {
        Ipv4Addr::new((ip >> 24) as u8, (ip >> 16) as u8, (ip >> 8) as u8, ip as u8)
    }
}

impl From<[u8; 4]> for Ipv4Addr {
    /// Create an `IpAddr::V4` from a four element byte array.
    ///
    fn from(octets: [u8; 4]) -> Ipv4Addr {
        Ipv4Addr::new(octets[0], octets[1], octets[2], octets[3])
    }
}

impl From<[u8; 4]> for IpAddr {
    fn from(octets: [u8; 4]) -> IpAddr {
        IpAddr::V4(Ipv4Addr::from(octets))
    }
}

impl Ipv6Addr {
    /// Creates a new IPv6 address from eight 16-bit segments.
    ///
    /// The result will represent the IP address a:b:c:d:e:f:g:h.
    ///
    pub fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16,
               h: u16) -> Ipv6Addr {
        let mut addr: c::in6_addr = unsafe { mem::zeroed() };
        addr.s6_addr = [(a >> 8) as u8, a as u8,
                        (b >> 8) as u8, b as u8,
                        (c >> 8) as u8, c as u8,
                        (d >> 8) as u8, d as u8,
                        (e >> 8) as u8, e as u8,
                        (f >> 8) as u8, f as u8,
                        (g >> 8) as u8, g as u8,
                        (h >> 8) as u8, h as u8];
        Ipv6Addr { inner: addr }
    }

    /// Creates a new IPv6 address representing localhost: `::1`.
    ///
    pub fn localhost() -> Ipv6Addr {
        Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)
    }

    /// Creates a new IPv6 address representing the unspecified address: `::`
    ///
    pub fn unspecified() -> Ipv6Addr {
        Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)
    }

    /// Returns the eight 16-bit segments that make up this address.
    ///
    pub fn segments(&self) -> [u16; 8] {
        let arr = &self.inner.s6_addr;
        [
            (arr[0] as u16) << 8 | (arr[1] as u16),
            (arr[2] as u16) << 8 | (arr[3] as u16),
            (arr[4] as u16) << 8 | (arr[5] as u16),
            (arr[6] as u16) << 8 | (arr[7] as u16),
            (arr[8] as u16) << 8 | (arr[9] as u16),
            (arr[10] as u16) << 8 | (arr[11] as u16),
            (arr[12] as u16) << 8 | (arr[13] as u16),
            (arr[14] as u16) << 8 | (arr[15] as u16),
        ]
    }

    /// Returns [`true`] for the special 'unspecified' address (::).
    ///
    /// This property is defined in [IETF RFC 4291].
    ///
    pub fn is_unspecified(&self) -> bool {
        self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
    }

    /// Returns [`true`] if this is a loopback address (::1).
    ///
    /// This property is defined in [IETF RFC 4291].
    ///
    pub fn is_loopback(&self) -> bool {
        self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
    }

    /// Returns [`true`] if the address appears to be globally routable.
    ///
    /// The following return [`false`]:
    ///
    /// - the loopback address
    /// - link-local, site-local, and unique local unicast addresses
    /// - interface-, link-, realm-, admin- and site-local multicast addresses
    ///
    pub fn is_global(&self) -> bool {
        match self.multicast_scope() {
            Some(Ipv6MulticastScope::Global) => true,
            None => self.is_unicast_global(),
            _ => false
        }
    }

    /// Returns [`true`] if this is a unique local address (fc00::/7).
    ///
    /// This property is defined in [IETF RFC 4193].
    ///
    pub fn is_unique_local(&self) -> bool {
        (self.segments()[0] & 0xfe00) == 0xfc00
    }

    /// Returns [`true`] if the address is unicast and link-local (fe80::/10).
    ///
    /// This property is defined in [IETF RFC 4291].
    ///
    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
    /// [`true`]: ../../std/primitive.bool.html
    ///
    pub fn is_unicast_link_local(&self) -> bool {
        (self.segments()[0] & 0xffc0) == 0xfe80
    }

    /// Returns [`true`] if this is a deprecated unicast site-local address
    /// (fec0::/10).
    ///
    pub fn is_unicast_site_local(&self) -> bool {
        (self.segments()[0] & 0xffc0) == 0xfec0
    }

    /// Returns [`true`] if this is an address reserved for documentation
    /// (2001:db8::/32).
    ///
    /// This property is defined in [IETF RFC 3849].
    ///
    pub fn is_documentation(&self) -> bool {
        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
    }

    /// Returns [`true`] if the address is a globally routable unicast address.
    ///
    /// The following return false:
    ///
    /// - the loopback address
    /// - the link-local addresses
    /// - the (deprecated) site-local addresses
    /// - unique local addresses
    /// - the unspecified address
    /// - the address range reserved for documentation
    ///
    pub fn is_unicast_global(&self) -> bool {
        !self.is_multicast()
            && !self.is_loopback() && !self.is_unicast_link_local()
            && !self.is_unicast_site_local() && !self.is_unique_local()
            && !self.is_unspecified() && !self.is_documentation()
    }

    /// Returns the address's multicast scope if the address is multicast.
    ///
    pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
        if self.is_multicast() {
            match self.segments()[0] & 0x000f {
                1 => Some(Ipv6MulticastScope::InterfaceLocal),
                2 => Some(Ipv6MulticastScope::LinkLocal),
                3 => Some(Ipv6MulticastScope::RealmLocal),
                4 => Some(Ipv6MulticastScope::AdminLocal),
                5 => Some(Ipv6MulticastScope::SiteLocal),
                8 => Some(Ipv6MulticastScope::OrganizationLocal),
                14 => Some(Ipv6MulticastScope::Global),
                _ => None
            }
        } else {
            None
        }
    }

    /// Returns [`true`] if this is a multicast address (ff00::/8).
    ///
    /// This property is defined by [IETF RFC 4291].
    ///
    pub fn is_multicast(&self) -> bool {
        (self.segments()[0] & 0xff00) == 0xff00
    }

    /// Converts this address to an [IPv4 address]. Returns [`None`] if this address is
    /// neither IPv4-compatible or IPv4-mapped.
    ///
    /// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
    ///
    pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
        match self.segments() {
            [0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
                Some(Ipv4Addr::new((g >> 8) as u8, g as u8,
                                   (h >> 8) as u8, h as u8))
            },
            _ => None
        }
    }

    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
    ///
    pub fn octets(&self) -> [u8; 16] {
        self.inner.s6_addr
    }
}

impl fmt::Display for Ipv6Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        match self.segments() {
            // We need special cases for :: and ::1, otherwise they're formatted
            // as ::0.0.0.[01]
            [0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"),
            [0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"),
            // Ipv4 Compatible address
            [0, 0, 0, 0, 0, 0, g, h] => {
                write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
                       (h >> 8) as u8, h as u8)
            }
            // Ipv4-Mapped address
            [0, 0, 0, 0, 0, 0xffff, g, h] => {
                write!(fmt, "::ffff:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
                       (h >> 8) as u8, h as u8)
            },
            _ => {
                fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) {
                    let mut longest_span_len = 0;
                    let mut longest_span_at = 0;
                    let mut cur_span_len = 0;
                    let mut cur_span_at = 0;

                    for i in 0..8 {
                        if segments[i] == 0 {
                            if cur_span_len == 0 {
                                cur_span_at = i;
                            }

                            cur_span_len += 1;

                            if cur_span_len > longest_span_len {
                                longest_span_len = cur_span_len;
                                longest_span_at = cur_span_at;
                            }
                        } else {
                            cur_span_len = 0;
                            cur_span_at = 0;
                        }
                    }

                    (longest_span_at, longest_span_len)
                }

                let (zeros_at, zeros_len) = find_zero_slice(&self.segments());

                if zeros_len > 1 {
                    fn fmt_subslice(segments: &[u16], fmt: &mut fmt::Formatter) -> fmt::Result {
                        if !segments.is_empty() {
                            write!(fmt, "{:x}", segments[0])?;
                            for &seg in &segments[1..] {
                                write!(fmt, ":{:x}", seg)?;
                            }
                        }
                        Ok(())
                    }

                    fmt_subslice(&self.segments()[..zeros_at], fmt)?;
                    fmt.write_str("::")?;
                    fmt_subslice(&self.segments()[zeros_at + zeros_len..], fmt)
                } else {
                    let &[a, b, c, d, e, f, g, h] = &self.segments();
                    write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
                           a, b, c, d, e, f, g, h)
                }
            }
        }
    }
}

impl fmt::Debug for Ipv6Addr {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(self, fmt)
    }
}

impl Clone for Ipv6Addr {
    fn clone(&self) -> Ipv6Addr { *self }
}

impl PartialEq for Ipv6Addr {
    fn eq(&self, other: &Ipv6Addr) -> bool {
        self.inner.s6_addr == other.inner.s6_addr
    }
}

impl PartialEq<IpAddr> for Ipv6Addr {
    fn eq(&self, other: &IpAddr) -> bool {
        match *other {
            IpAddr::V4(_) => false,
            IpAddr::V6(ref v6) => self == v6,
        }
    }
}

impl PartialEq<Ipv6Addr> for IpAddr {
    fn eq(&self, other: &Ipv6Addr) -> bool {
        match *self {
            IpAddr::V4(_) => false,
            IpAddr::V6(ref v6) => v6 == other,
        }
    }
}

impl Eq for Ipv6Addr {}

impl hash::Hash for Ipv6Addr {
    fn hash<H: hash::Hasher>(&self, s: &mut H) {
        self.inner.s6_addr.hash(s)
    }
}

impl PartialOrd for Ipv6Addr {
    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl PartialOrd<Ipv6Addr> for IpAddr {
    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
        match *self {
            IpAddr::V4(_) => Some(Ordering::Less),
            IpAddr::V6(ref v6) => v6.partial_cmp(other),
        }
    }
}

impl PartialOrd<IpAddr> for Ipv6Addr {
    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
        match *other {
            IpAddr::V4(_) => Some(Ordering::Greater),
            IpAddr::V6(ref v6) => self.partial_cmp(v6),
        }
    }
}

impl Ord for Ipv6Addr {
    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
        self.segments().cmp(&other.segments())
    }
}

impl AsInner<c::in6_addr> for Ipv6Addr {
    fn as_inner(&self) -> &c::in6_addr { &self.inner }
}
impl FromInner<c::in6_addr> for Ipv6Addr {
    fn from_inner(addr: c::in6_addr) -> Ipv6Addr {
        Ipv6Addr { inner: addr }
    }
}

impl From<Ipv6Addr> for u128 {
    fn from(ip: Ipv6Addr) -> u128 {
        let ip = ip.segments();
        ((ip[0] as u128) << 112) + ((ip[1] as u128) << 96) + ((ip[2] as u128) << 80) +
            ((ip[3] as u128) << 64) + ((ip[4] as u128) << 48) + ((ip[5] as u128) << 32) +
            ((ip[6] as u128) << 16) + (ip[7] as u128)
    }
}

impl From<u128> for Ipv6Addr {
    fn from(ip: u128) -> Ipv6Addr {
        Ipv6Addr::new(
            (ip >> 112) as u16, (ip >> 96) as u16, (ip >> 80) as u16,
            (ip >> 64) as u16, (ip >> 48) as u16, (ip >> 32) as u16,
            (ip >> 16) as u16, ip as u16,
        )
    }
}

impl From<[u8; 16]> for Ipv6Addr {
    fn from(octets: [u8; 16]) -> Ipv6Addr {
        let mut inner: c::in6_addr = unsafe { mem::zeroed() };
        inner.s6_addr = octets;
        Ipv6Addr::from_inner(inner)
    }
}

impl From<[u16; 8]> for Ipv6Addr {
    fn from(segments: [u16; 8]) -> Ipv6Addr {
        let [a, b, c, d, e, f, g, h] = segments;
        Ipv6Addr::new(a, b, c, d, e, f, g, h)
    }
}

impl From<[u8; 16]> for IpAddr {
    /// Create an `IpAddr::V6` from a sixteen element byte array.
    ///
    fn from(octets: [u8; 16]) -> IpAddr {
        IpAddr::V6(Ipv6Addr::from(octets))
    }
}

impl From<[u16; 8]> for IpAddr {
    /// Create an `IpAddr::V6` from an eight element 16-bit array.
    ///
    fn from(segments: [u16; 8]) -> IpAddr {
        IpAddr::V6(Ipv6Addr::from(segments))
    }
}