1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
// Copyright (C) 2017-2018 Baidu, Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // * Neither the name of Baidu, Inc., nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. //! This module provides constants which are specific to the implementation //! of the `f32` floating point data type. //! //! *[See also the `f32` primitive type](../../std/primitive.f32.html).* //! //! Mathematically significant numbers are provided in the `consts` sub-module. #![allow(missing_docs)] use intrinsics; use sys::cmath; pub use core::f32::{RADIX, MANTISSA_DIGITS, DIGITS, EPSILON}; pub use core::f32::{MIN_EXP, MAX_EXP, MIN_10_EXP}; pub use core::f32::{MAX_10_EXP, NAN, INFINITY, NEG_INFINITY}; pub use core::f32::{MIN, MIN_POSITIVE, MAX}; pub use core::f32::consts; #[lang = "f32_runtime"] impl f32 { /// Returns the largest integer less than or equal to a number. /// /// # Examples /// /// ``` /// let f = 3.99_f32; /// let g = 3.0_f32; /// /// assert_eq!(f.floor(), 3.0); /// assert_eq!(g.floor(), 3.0); /// ``` #[inline] pub fn floor(self) -> f32 { // On MSVC LLVM will lower many math intrinsics to a call to the // corresponding function. On MSVC, however, many of these functions // aren't actually available as symbols to call, but rather they are all // `static inline` functions in header files. This means that from a C // perspective it's "compatible", but not so much from an ABI // perspective (which we're worried about). // // The inline header functions always just cast to a f64 and do their // operation, so we do that here as well, but only for MSVC targets. // // Note that there are many MSVC-specific float operations which // redirect to this comment, so `floorf` is just one case of a missing // function on MSVC, but there are many others elsewhere. #[cfg(target_env = "msvc")] return (self as f64).floor() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::floorf32(self) }; } /// Returns the smallest integer greater than or equal to a number. /// /// # Examples /// /// ``` /// let f = 3.01_f32; /// let g = 4.0_f32; /// /// assert_eq!(f.ceil(), 4.0); /// assert_eq!(g.ceil(), 4.0); /// ``` #[inline] pub fn ceil(self) -> f32 { // see notes above in `floor` #[cfg(target_env = "msvc")] return (self as f64).ceil() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::ceilf32(self) }; } /// Returns the nearest integer to a number. Round half-way cases away from /// `0.0`. /// /// # Examples /// /// ``` /// let f = 3.3_f32; /// let g = -3.3_f32; /// /// assert_eq!(f.round(), 3.0); /// assert_eq!(g.round(), -3.0); /// ``` #[inline] pub fn round(self) -> f32 { unsafe { intrinsics::roundf32(self) } } /// Returns the integer part of a number. /// /// # Examples /// /// ``` /// let f = 3.3_f32; /// let g = -3.7_f32; /// /// assert_eq!(f.trunc(), 3.0); /// assert_eq!(g.trunc(), -3.0); /// ``` #[inline] pub fn trunc(self) -> f32 { unsafe { intrinsics::truncf32(self) } } /// Returns the fractional part of a number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 3.5_f32; /// let y = -3.5_f32; /// let abs_difference_x = (x.fract() - 0.5).abs(); /// let abs_difference_y = (y.fract() - (-0.5)).abs(); /// /// assert!(abs_difference_x <= f32::EPSILON); /// assert!(abs_difference_y <= f32::EPSILON); /// ``` #[inline] pub fn fract(self) -> f32 { self - self.trunc() } /// Computes the absolute value of `self`. Returns `NAN` if the /// number is `NAN`. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 3.5_f32; /// let y = -3.5_f32; /// /// let abs_difference_x = (x.abs() - x).abs(); /// let abs_difference_y = (y.abs() - (-y)).abs(); /// /// assert!(abs_difference_x <= f32::EPSILON); /// assert!(abs_difference_y <= f32::EPSILON); /// /// assert!(f32::NAN.abs().is_nan()); /// ``` #[inline] pub fn abs(self) -> f32 { unsafe { intrinsics::fabsf32(self) } } /// Returns a number that represents the sign of `self`. /// /// - `1.0` if the number is positive, `+0.0` or `INFINITY` /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY` /// - `NAN` if the number is `NAN` /// /// # Examples /// /// ``` /// use std::f32; /// /// let f = 3.5_f32; /// /// assert_eq!(f.signum(), 1.0); /// assert_eq!(f32::NEG_INFINITY.signum(), -1.0); /// /// assert!(f32::NAN.signum().is_nan()); /// ``` #[inline] pub fn signum(self) -> f32 { if self.is_nan() { NAN } else { unsafe { intrinsics::copysignf32(1.0, self) } } } /// Fused multiply-add. Computes `(self * a) + b` with only one rounding /// error, yielding a more accurate result than an unfused multiply-add. /// /// Using `mul_add` can be more performant than an unfused multiply-add if /// the target architecture has a dedicated `fma` CPU instruction. /// /// # Examples /// /// ``` /// use std::f32; /// /// let m = 10.0_f32; /// let x = 4.0_f32; /// let b = 60.0_f32; /// /// // 100.0 /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn mul_add(self, a: f32, b: f32) -> f32 { unsafe { intrinsics::fmaf32(self, a, b) } } /// Calculates Euclidean division, the matching method for `mod_euc`. /// /// This computes the integer `n` such that /// `self = n * rhs + self.mod_euc(rhs)`. /// In other words, the result is `self / rhs` rounded to the integer `n` /// such that `self >= n * rhs`. /// /// # Examples /// /// ``` /// #![feature(euclidean_division)] /// let a: f32 = 7.0; /// let b = 4.0; /// assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0 /// assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0 /// assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0 /// assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0 /// ``` #[inline] pub fn div_euc(self, rhs: f32) -> f32 { let q = (self / rhs).trunc(); if self % rhs < 0.0 { return if rhs > 0.0 { q - 1.0 } else { q + 1.0 } } q } /// Calculates the Euclidean modulo (self mod rhs), which is never negative. /// /// In particular, the result `n` satisfies `0 <= n < rhs.abs()`. /// /// # Examples /// /// ``` /// #![feature(euclidean_division)] /// let a: f32 = 7.0; /// let b = 4.0; /// assert_eq!(a.mod_euc(b), 3.0); /// assert_eq!((-a).mod_euc(b), 1.0); /// assert_eq!(a.mod_euc(-b), 3.0); /// assert_eq!((-a).mod_euc(-b), 1.0); /// ``` #[inline] pub fn mod_euc(self, rhs: f32) -> f32 { let r = self % rhs; if r < 0.0 { r + rhs.abs() } else { r } } /// Raises a number to an integer power. /// /// Using this function is generally faster than using `powf` /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 2.0_f32; /// let abs_difference = (x.powi(2) - x*x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn powi(self, n: i32) -> f32 { unsafe { intrinsics::powif32(self, n) } } /// Raises a number to a floating point power. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 2.0_f32; /// let abs_difference = (x.powf(2.0) - x*x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn powf(self, n: f32) -> f32 { // see notes above in `floor` #[cfg(target_env = "msvc")] return (self as f64).powf(n as f64) as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::powf32(self, n) }; } /// Takes the square root of a number. /// /// Returns NaN if `self` is a negative number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let positive = 4.0_f32; /// let negative = -4.0_f32; /// /// let abs_difference = (positive.sqrt() - 2.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// assert!(negative.sqrt().is_nan()); /// ``` #[inline] pub fn sqrt(self) -> f32 { if self < 0.0 { NAN } else { unsafe { intrinsics::sqrtf32(self) } } } /// Returns `e^(self)`, (the exponential function). /// /// # Examples /// /// ``` /// use std::f32; /// /// let one = 1.0f32; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn exp(self) -> f32 { // see notes above in `floor` #[cfg(target_env = "msvc")] return (self as f64).exp() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::expf32(self) }; } /// Returns `2^(self)`. /// /// # Examples /// /// ``` /// use std::f32; /// /// let f = 2.0f32; /// /// // 2^2 - 4 == 0 /// let abs_difference = (f.exp2() - 4.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn exp2(self) -> f32 { unsafe { intrinsics::exp2f32(self) } } /// Returns the natural logarithm of the number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let one = 1.0f32; /// // e^1 /// let e = one.exp(); /// /// // ln(e) - 1 == 0 /// let abs_difference = (e.ln() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn ln(self) -> f32 { // see notes above in `floor` #[cfg(target_env = "msvc")] return (self as f64).ln() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::logf32(self) }; } /// Returns the logarithm of the number with respect to an arbitrary base. /// /// The result may not be correctly rounded owing to implementation details; /// `self.log2()` can produce more accurate results for base 2, and /// `self.log10()` can produce more accurate results for base 10. /// /// # Examples /// /// ``` /// use std::f32; /// /// let five = 5.0f32; /// /// // log5(5) - 1 == 0 /// let abs_difference = (five.log(5.0) - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn log(self, base: f32) -> f32 { self.ln() / base.ln() } /// Returns the base 2 logarithm of the number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let two = 2.0f32; /// /// // log2(2) - 1 == 0 /// let abs_difference = (two.log2() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn log2(self) -> f32 { #[cfg(target_os = "android")] return ::sys::android::log2f32(self); #[cfg(not(target_os = "android"))] return unsafe { intrinsics::log2f32(self) }; } /// Returns the base 10 logarithm of the number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let ten = 10.0f32; /// /// // log10(10) - 1 == 0 /// let abs_difference = (ten.log10() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn log10(self) -> f32 { // see notes above in `floor` #[cfg(target_env = "msvc")] return (self as f64).log10() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::log10f32(self) }; } /// Takes the cubic root of a number. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 8.0f32; /// /// // x^(1/3) - 2 == 0 /// let abs_difference = (x.cbrt() - 2.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn cbrt(self) -> f32 { unsafe { cmath::cbrtf(self) } } /// Calculates the length of the hypotenuse of a right-angle triangle given /// legs of length `x` and `y`. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 2.0f32; /// let y = 3.0f32; /// /// // sqrt(x^2 + y^2) /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn hypot(self, other: f32) -> f32 { unsafe { cmath::hypotf(self, other) } } /// Computes the sine of a number (in radians). /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = f32::consts::PI/2.0; /// /// let abs_difference = (x.sin() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn sin(self) -> f32 { // see notes in `core::f32::Float::floor` #[cfg(target_env = "msvc")] return (self as f64).sin() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::sinf32(self) }; } /// Computes the cosine of a number (in radians). /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 2.0*f32::consts::PI; /// /// let abs_difference = (x.cos() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn cos(self) -> f32 { // see notes in `core::f32::Float::floor` #[cfg(target_env = "msvc")] return (self as f64).cos() as f32; #[cfg(not(target_env = "msvc"))] return unsafe { intrinsics::cosf32(self) }; } /// Computes the tangent of a number (in radians). /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = f32::consts::PI / 4.0; /// let abs_difference = (x.tan() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn tan(self) -> f32 { unsafe { cmath::tanf(self) } } /// Computes the arcsine of a number. Return value is in radians in /// the range [-pi/2, pi/2] or NaN if the number is outside the range /// [-1, 1]. /// /// # Examples /// /// ``` /// use std::f32; /// /// let f = f32::consts::PI / 2.0; /// /// // asin(sin(pi/2)) /// let abs_difference = (f.sin().asin() - f32::consts::PI / 2.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn asin(self) -> f32 { unsafe { cmath::asinf(self) } } /// Computes the arccosine of a number. Return value is in radians in /// the range [0, pi] or NaN if the number is outside the range /// [-1, 1]. /// /// # Examples /// /// ``` /// use std::f32; /// /// let f = f32::consts::PI / 4.0; /// /// // acos(cos(pi/4)) /// let abs_difference = (f.cos().acos() - f32::consts::PI / 4.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn acos(self) -> f32 { unsafe { cmath::acosf(self) } } /// Computes the arctangent of a number. Return value is in radians in the /// range [-pi/2, pi/2]; /// /// # Examples /// /// ``` /// use std::f32; /// /// let f = 1.0f32; /// /// // atan(tan(1)) /// let abs_difference = (f.tan().atan() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn atan(self) -> f32 { unsafe { cmath::atanf(self) } } /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians. /// /// * `x = 0`, `y = 0`: `0` /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` /// /// # Examples /// /// ``` /// use std::f32; /// /// let pi = f32::consts::PI; /// // Positive angles measured counter-clockwise /// // from positive x axis /// // -pi/4 radians (45 deg clockwise) /// let x1 = 3.0f32; /// let y1 = -3.0f32; /// /// // 3pi/4 radians (135 deg counter-clockwise) /// let x2 = -3.0f32; /// let y2 = 3.0f32; /// /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); /// /// assert!(abs_difference_1 <= f32::EPSILON); /// assert!(abs_difference_2 <= f32::EPSILON); /// ``` #[inline] pub fn atan2(self, other: f32) -> f32 { unsafe { cmath::atan2f(self, other) } } /// Simultaneously computes the sine and cosine of the number, `x`. Returns /// `(sin(x), cos(x))`. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = f32::consts::PI/4.0; /// let f = x.sin_cos(); /// /// let abs_difference_0 = (f.0 - x.sin()).abs(); /// let abs_difference_1 = (f.1 - x.cos()).abs(); /// /// assert!(abs_difference_0 <= f32::EPSILON); /// assert!(abs_difference_1 <= f32::EPSILON); /// ``` #[inline] pub fn sin_cos(self) -> (f32, f32) { (self.sin(), self.cos()) } /// Returns `e^(self) - 1` in a way that is accurate even if the /// number is close to zero. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 6.0f32; /// /// // e^(ln(6)) - 1 /// let abs_difference = (x.ln().exp_m1() - 5.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn exp_m1(self) -> f32 { unsafe { cmath::expm1f(self) } } /// Returns `ln(1+n)` (natural logarithm) more accurately than if /// the operations were performed separately. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = f32::consts::E - 1.0; /// /// // ln(1 + (e - 1)) == ln(e) == 1 /// let abs_difference = (x.ln_1p() - 1.0).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn ln_1p(self) -> f32 { unsafe { cmath::log1pf(self) } } /// Hyperbolic sine function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let e = f32::consts::E; /// let x = 1.0f32; /// /// let f = x.sinh(); /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` /// let g = (e*e - 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn sinh(self) -> f32 { unsafe { cmath::sinhf(self) } } /// Hyperbolic cosine function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let e = f32::consts::E; /// let x = 1.0f32; /// let f = x.cosh(); /// // Solving cosh() at 1 gives this result /// let g = (e*e + 1.0)/(2.0*e); /// let abs_difference = (f - g).abs(); /// /// // Same result /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn cosh(self) -> f32 { unsafe { cmath::coshf(self) } } /// Hyperbolic tangent function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let e = f32::consts::E; /// let x = 1.0f32; /// /// let f = x.tanh(); /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); /// let abs_difference = (f - g).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn tanh(self) -> f32 { unsafe { cmath::tanhf(self) } } /// Inverse hyperbolic sine function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 1.0f32; /// let f = x.sinh().asinh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn asinh(self) -> f32 { if self == NEG_INFINITY { NEG_INFINITY } else { (self + ((self * self) + 1.0).sqrt()).ln() } } /// Inverse hyperbolic cosine function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let x = 1.0f32; /// let f = x.cosh().acosh(); /// /// let abs_difference = (f - x).abs(); /// /// assert!(abs_difference <= f32::EPSILON); /// ``` #[inline] pub fn acosh(self) -> f32 { match self { x if x < 1.0 => ::f32::NAN, x => (x + ((x * x) - 1.0).sqrt()).ln(), } } /// Inverse hyperbolic tangent function. /// /// # Examples /// /// ``` /// use std::f32; /// /// let e = f32::consts::E; /// let f = e.tanh().atanh(); /// /// let abs_difference = (f - e).abs(); /// /// assert!(abs_difference <= 1e-5); /// ``` #[inline] pub fn atanh(self) -> f32 { 0.5 * ((2.0 * self) / (1.0 - self)).ln_1p() } }